34 research outputs found

    Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms

    Get PDF
    Primers and probes were developed for the element-specific detection of cry1A.105 and cry2Ab2 genes, based on their DNA sequence as present in GM maize MON89034. Cry genes are present in many genetically modified (GM) plants and they are important targets for developing GMO element-specific detection methods. Element-specific methods can be of use to screen for the presence of GMOs in food and feed supply chains. Moreover, a combination of GMO elements may indicate the potential presence of unapproved GMOs (UGMs). Primer-probe combinations were evaluated in terms of specificity, efficiency and limit of detection. Except for specificity, the complete experiment was performed in 9 PCR runs, on 9 different days and by testing 8 DNA concentrations. The results showed a high specificity and efficiency for cry1A.105 and cry2Ab2 detection. The limit of detection was between 0.05 and 0.01 ng DNA per PCR reaction for both assays. These data confirm the applicability of these new primer-probe combinations for element detection that can contribute to the screening for GM and UGM crops in food and feed samples

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF

    Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits

    Get PDF
    Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.Peer reviewe

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.Peer reviewe

    A case study to determine the geographical origin of unknown GM papaya in routine food sample analysis, followed by identification of papaya events 16-0-1 and 18-2-4

    No full text
    During routine monitoring for GMOs in food in the Netherlands, papaya-containing food supplements were found positive for the genetically modified (GM) elements P-35S and T-nos. The goal of this study was to identify the unknown and EU unauthorised GM papaya event(s). A screening strategy was applied using additional GM screening elements including a newly developed PRSV coat protein PCR. The detected PRSV coat protein PCR product was sequenced and the nucleotide sequence showed identity to PRSV YK strains indigenous to China and Taiwan. The GM events 16-0-1 and 18-2-4 could be identified by amplifying and sequencing events-specific sequences. Further analyses showed that both papaya event 16-0-1 and event 18-2-4 were transformed with the same construct. For use in routine analysis, derived TaqMan qPCR methods for events 16-0-1 and 18-2-4 were developed. Event 16-0-1 was detected in all samples tested whereas event 18-2-4 was detected in one sample. This study presents a strategy for combining information from different sources (literature, patent databases) and novel sequence data to identify unknown GM papaya events

    Data on screening and identification of genetically modified papaya in food supplements

    Get PDF
    This article contains data related to the research article entitled “A case study to determine the geographical origin of unknown GM papaya in routine food sample analysis, followed by identification of papaya events 16-0-1 and 18-2-4” (Prins et al., 2016) [1]. Quantitative real-time PCR (qPCR) with targets that are putatively present in genetically modified (GM) papaya was used as a first screening to narrow down the vast array of candidates. The combination of elements P-nos and nptII was further confirmed by amplification and subsequent sequencing of the P-nos/nptII construct. Next, presence of the candidate GM papayas 16-0-1 and 18-2-4 were investigated by amplification and sequencing of event-spanning regions on the left and right border. This data article reports the Cq values for GM elements, the nucleotide sequence of the P-nos/nptII construct and the presence of GM papaya events 18-2-4 and/or 16-0-1 in five samples that were randomly sampled to be analysed in the framework of the official Dutch GMO monitoring program for food

    Evaluation of a loop-mediated isothermal amplification (LAMP) method for rapid on-site detection of horse meat

    No full text
    Detection of horse DNA by loop-mediated isothermal amplification (LAMP) seems one of the most promising methods to meet the criteria of fast, robust, cost efficient, specific, and sensitive on-site detection. In the present study an assessment of the specificity and sensitivity of the LAMP horse screening assay was made and outcomes were compared with the EURL-AP (European Union Reference laboratory for Animal Proteins in feeding stuffs) qPCR method. The specificity was tested with DNA samples from seven other species. The sensitivity of the LAMP assay was subsequently challenged with different percentages of horse DNA in cattle DNA and different percentages of horse meat in cattle meat. Both qPCR and LAMP were able to reliably detect horse DNA or meat below 0.1%, but LAMP was able to do so in less than 30 min. The DNA of other species did not result in a response in the LAMP horse assay. These features show that the LAMP method is fast, specific, and sensitive. Next, 69 processed meat samples were screened for the presence of horse DNA. The results showed that the LAMP horse assay, combined with a simple and fast on-site DNA extraction method, results in similar outcomes as the EURL-AP qPCR method and is thus a promising screening assay to be used outside the laboratory. Only samples that are screened on-site as suspect in the LAMP horse assay, need to be brought to the laboratory for confirmation with the more laborious EURL-AP qPCR reference method.</p
    corecore