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Abstract 35 
 36 
Background: Monogenic insulin resistance (IR) includes lipodystrophy and disorders of insulin 37 

signalling. We sought to assess effects of interventions in monogenic IR, stratified by genetic 38 

aetiology. 39 

Methods: Systematic review using PubMed, MEDLINE and Embase (1 January 1987 to 23 June 2021). 40 

Studies reporting individual-level effects of pharmacologic and/or surgical interventions in monogenic 41 

IR were eligible. Individual data were extracted and duplicates removed. Outcomes were analysed for 42 

each gene and intervention, and in aggregate for partial, generalised and all lipodystrophy. 43 

Results: 10 non-randomised experimental studies, 8 case series, and 23 case reports meet inclusion 44 

criteria, all rated as having moderate or serious risk of bias. Metreleptin use is associated with lowering 45 

of triglycerides and hemoglobin A1c (HbA1c) in all lipodystrophy (n=111), partial (n=71) and 46 

generalised lipodystrophy (n=41)), and in LMNA, PPARG, AGPAT2 or BSCL2 subgroups (n=72,13,21 and 47 

21 respectively). Body Mass Index (BMI) is lowered in partial and generalised lipodystrophy, and in 48 

LMNA or BSCL2, but not PPARG or AGPAT2 subgroups. Thiazolidinediones are associated with 49 

improved HbA1c and triglycerides in all lipodystrophy (n=13), improved HbA1c  in PPARG (n=5), and 50 

improved triglycerides in LMNA (n=7). In INSR-related IR, rhIGF-1, alone or with IGFBP3, are associated 51 

with improved HbA1c (n=17). The small size or absence of other genotype-treatment combinations 52 

preclude firm conclusions. 53 

Conclusions: The evidence guiding genotype-specific treatment of monogenic IR is of low to very low 54 

quality. Metreleptin and Thiazolidinediones appear to improve metabolic markers in lipodystrophy, 55 

and rhIGF-1 appears to lower HbA1c in INSR-related IR. For other interventions there is insufficient 56 

evidence to assess efficacy and risks in aggregated lipodystrophy or genetic subgroups. 57 

 58 

Plain Language Summary 59 

The hormone insulin stimulates nutrient uptake from the bloodstream into tissues. In insulin 60 

resistance (IR), this action is blunted. Some rare gene alterations cause severe IR, diabetes that is 61 
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difficult to control, and early complications. Many treatments have been suggested, but reliable 62 

evidence of their risks and benefits is sparse. We analysed all available reports describing treatment 63 

outcomes in severe IR. We found that the evidence is of low to very low quality overall. Injections of 64 

leptin, a hormone from fat tissue, or thiazolidinedione tablets that increase fat tissue both appear to 65 

improve diabetes control in people with reduced ability to make fat tissue. Injections of another 66 

treatment, insulin-like growth factor, appear to improve diabetes control in people with direct 67 

blockage of insulin action. There is a pressing need to improve evidence for treatment in these rare 68 

and severe conditions.69 
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Introduction 70 

Diabetes caused by single gene changes is highly heterogeneous in molecular 71 

aetiopathogenesis. It may be grouped into disorders featuring primary failure of insulin 72 

secretion, and disorders in which insulin resistance (IR), often severe, predates secondary 73 

failure of insulin secretion and diabetes. Monogenic IR is itself heterogeneous, encompassing 74 

primary lipodystrophy syndromes, primary disorders of insulin signalling, and a group of 75 

conditions in which severe IR is part of a more complex developmental syndrome 1. 76 

Monogenic IR is rare but underdiagnosed. The commonest subgroup is formed by 77 

genetic lipodystrophy syndromes 2,3.   Recent analysis of a large clinical care cohort unselected 78 

for metabolic disease suggested a clinical prevalence of lipodystrophy of around 1 in 20,000, 79 

with a prevalence of plausible lipodystrophy-causing genetic variants of around 1 in 7,000 4. 80 

Monogenic IR is important to recognise, because affected patients are at risk not only of 81 

micro- and macrovascular complications of diabetes, but also of complications such as 82 

dyslipidemia, pancreatitis, and steatohepatitis, especially in lipodystrophy syndromes 5.  Non-83 

metabolic complications specific to individual gene defects may also occur, including 84 

hypertrophic cardiomyopathy and other manifestations of soft tissue overgrowth 3. Diabetes 85 

is also commonly the sentinel presentation of a multisystem disorder, and recognition of 86 

complex syndromes in a diabetes clinic may trigger definitive diagnostic testing. 87 

The only therapy licensed specifically for monogenic IR is recombinant human 88 

methionyl leptin (metreleptin), with licensed indications encompassing a subset of patients 89 

with lipodystrophy and inadequate metabolic control. The current license in the USA is 90 

restricted to generalised lipodystrophy, but in Europe it extends to some patients with partial 91 

lipodystrophy. A substantial proportion of the body of evidence considered in licensing 92 
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addressed patients ascertained by presence of clinical lipodystrophy, and the role of genetic 93 

stratification in precision treatment of lipodystrophy has not been systematically addressed. 94 

Many other medications and other treatment options are also widely used in monogenic IR, 95 

although not licensed for that specific subgroup. Such use draws on the evidence base and 96 

treatment algorithms developed for type 2 diabetes.  Several forms of monogenic IR have 97 

molecular and/or clinical attributes that suggest potential precision approaches to treatment.   98 

We sought now to undertake a systematic review of the current evidence guiding 99 

treatment of monogenic IR stratified by genetic aetiology, to assess evidence for differential 100 

responses to currently used therapies, to establish gaps in evidence, and to inform future 101 

studies. This systematic review is written on behalf of the American Diabetes Association 102 

(ADA)/European Association for the Study of Diabetes (EASD) Precision Medicine in Diabetes 103 

Initiative (PMDI) as part of a comprehensive evidence evaluation in support of the 104 

2nd International Consensus Report on Precision Diabetes Medicine 6. The PMDI was 105 

established in 2018 by the ADA in partnership with the EASD to address the burgeoning need 106 

for better diabetes prevention and care through precision medicine 7. 107 

Our analyses show that metreleptin and thiazolidinediones appear to lower HbA1c, 108 

triglycerides, and body weight in patients with lipodystrophy of all genotypes, and rhIGF-1 appears 109 

to lower HbA1c in patients with INSR-related IR. For other interventions there is insufficient 110 

evidence to assess efficacy and risks. 111 

 112 

Methods 113 

Inclusion Criteria and Search Methodology  114 

To assess treatment of severe IR of known monogenic aetiology, with or without 115 

diabetes mellitus, including generalised and partial lipodystrophy and genetic disorders of the 116 
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insulin receptor, we developed, registered and followed a protocol for a systematic review 117 

(PROSPERO ID CRD42021265365; registered July 21, 2021)8. The study was reported in 118 

accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis 119 

(PRISMA) guidelines. Filtering and selection of studies for data extraction were recorded using 120 

the Covidence platform (https://www.covidence.org, Melbourne, Australia). 121 

We searched PubMed, MEDLINE and Embase from 1987 (the year before 122 

identification of the first monogenic aetiology of IR) to June 23, 2021 for potentially relevant 123 

human studies in English. We used broad search terms designed to capture the heterogeneity 124 

of monogenic IR and its treatments. We searched for studies addressing 1. Severe IR due to 125 

variant(s) in a single gene OR 2. Congenital generalised or familial partial lipodystrophy due 126 

to variant(s) in a single gene. We selected only studies that reported a treatment term, 127 

including but not limited to mention of 1. Thiazolidinediones (TZD), 2. Metreleptin, 3. SGLT2 128 

inhibitors, 4. GLP-1 analogues, 5. Bariatric surgery (all types), 6. Recombinant human IGF-1 or 129 

IGF-1/IGFBP3 composite, 7. U-500 insulin.  No interventions were excluded in the primary 130 

search. In addition to the automated search, we hand searched reference lists of relevant 131 

review articles.  Given the rarity of monogenic IR, no study types were excluded in the initial 132 

search. We ultimately considered experimental studies, case reports, and case series. The full 133 

search strategy is described in Supplementary Table 1.  134 

Study selection for data extraction was performed in two phases, namely primary 135 

screening of title and abstract, then full text review of potentially eligible articles. Two authors 136 

independently evaluated eligibility, with discrepancies resolved by a third investigator. We 137 

excluded publications without original data, such as reviews, editorials, and comments, and 138 

those solely addressing severe IR or lipodystrophy of unknown or known non-monogenic 139 

aetiology, including HIV-related or other acquired lipodystrophies, or autoimmune insulin 140 
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receptoropathy (Type B insulin resistance). Studies in which no clear categorical or numerical 141 

outcome of an intervention was reported, or in which interventions were administered for 142 

less than 28 days were also excluded. 143 

 144 

Data extraction and outcome assessments 145 

One author extracted data from each eligible study using data extraction sheets. 146 

Data from each study was verified by all 3 authors to reach consensus.  Data were extracted 147 

from text, tables, or figures.  Study investigators were contacted for pertinent unreported 148 

data or additional details where possible, most commonly genetic aetiology of insulin 149 

resistance in reported patients, and outcome data.  150 

Data extracted for each study included first author, publication year, country, details 151 

of intervention, duration of follow-up, study design, and number of participants.  Subject-152 

level data were extracted for outcomes of interest, including sex, genetic cause of severe 153 

insulin resistance (gene name, mono- vs biallelic INSR pathogenic variant), phenotypic details 154 

of severe IR/lipodystrophic subtype (generalised vs partial lipodystrophy; associated 155 

syndromic features). Subject level outcome data for were extracted prior to and after the 156 

longest-reported exposure to the intervention of interest for hemoglobin A1c (A1c), body 157 

mass index, serum triglyceride, ALT, or AST concentration, any index of liver size or lipid 158 

content, and total daily insulin dose. Potential adverse effects of interventions were recorded, 159 

including urinary tract infection, genital candidiasis, hypoglycemia, excessive weight loss, 160 

pancreatitis, soft tissue overgrowth, and tumor formation. 161 

 162 

Risk of bias and certainty of evidence assessment  163 
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Quality of extracted case reports and case series was assessed using NIH Study 164 

Quality Assessment Tools9 by a single reviewer and verified by 2 additional reviewers. 165 

Grading of overall evidence for specific research questions was undertaken as detailed in 10. 166 

 167 

Statistics and Reproducibility  168 

Extracted data were managed using Covidence and analysed with SAS version 9.4.   169 

Pooled analysis was undertaken for all combinations of genotype and intervention for which 170 

sufficient numbers were reported, as well as for aggregated lipodystrophies, and 171 

generalized and partial subgroups of lipodystrophy.  Generalized Estimating Equation 172 

models were used with time as a fixed factor and study as a random factor to examine 173 

treatment effects. Serum triglyceride concentrations were analyzed with and without log 174 

transformation.  Data were summarized using estimated least-squared means with 175 

corresponding 95% confidence intervals.  176 

 177 

Results 178 

Identification of eligible studies  179 

Initial searching identified 2,933 studies, to which 117 were added from the 180 

bibliography reviews. 256 articles remained after screening of titles and abstracts, and 44 181 

after full text screening (Figure 1).  182 

 183 

Included studies addressed limited interventions and most had a high risk of bias 184 

The 44 studies analysed, and assessment of their quality are summarised in Table 1 185 

and detailed in Supplementary Data 1.  Study quality was assessed as being fair in 15 cases 186 

and poor in 29 cases, including all case reports. This was primarily due to high risk of bias, 187 
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particularly related to lack of control group for all studies. Three of the 44 studies included in 188 

further analysis included only individuals already described in other reports and were 189 

discarded, leaving 41 studies for final analysis. These comprised 10 non-controlled 190 

experimental studies, 8 case series and 23 individual case reports (Table 1). No controlled 191 

trials were found. Individuals reported in the studies included 90 with partial lipodystrophy 192 

(72 due to LMNA mutation and 15 due to PPARG mutation), 42 with generalized lipodystrophy 193 

(21 AGPAT2, 21 BSCL2, 2 LMNA), and 19 with IR due to INSR mutation(s). Among the 194 

interventions described, only the responses to metreleptin (111 recipients), 195 

thiazolidinediones (13 recipients) and rhIGF-1 (alone or as a composite with IGFBP3) (17 196 

recipients) were described in more than 5 cases (Table 1). This meant that for the large 197 

preponderance of possible genotype-treatment combinations no specific data were 198 

recovered (Supplementary Table 2). Full outcome data extracted are summarised in 199 

Supplementary Data 2, and subject-level data are shown in Supplementary Figures 1 through 200 

8 with raw data provided in Supplementary Data 2.    201 

 202 

Metreleptin treatment was associated with improved metabolic control in lipodystrophy 203 

In our registered systematic review plan we posed several subquestions about 204 

treatment of monogenic IR subtypes that we felt were tractable. The first related to the risks 205 

and benefits (assessed by side effects, A1c, serum triglyceride concentration, body mass index 206 

(BMI), and indices of fatty liver) of metreleptin in patients with different monogenic subtypes 207 

of lipodystrophy. The response to metreleptin was described in 111 people (71 with partial 208 

lipodystrophy, 40 with generalized lipodystrophy) 11-23. Metreleptin was administered for 209 

19±20 months (median 12, range 1-108) and was associated with lowering of A1c in 210 

aggregated lipodystrophy, in generalized and partial subgroups, and in all genetic subgroups 211 
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for whom sufficient patients were reported, namely those with LMNA, PPARG, AGPAT2 and 212 

BSCL2 mutations (0.5 to 1.5% least square mean reduction) (Level 3 evidence, Supplementary 213 

Data 3, Figure 2). Metreleptin treatment was also associated with lowering of serum 214 

triglyceride concentration in aggregated lipodystrophy, in generalized and partial subgroups, 215 

and in those with LMNA, PPARG, AGPAT2 and BSCL2 mutations (92 to 1760 mg/dL least 216 

square mean reduction for analyses of untransformed data) (Level 3 evidence, 217 

Supplementary Data 3, Figure 2).  BMI was lower after treatment in aggregated lipodystrophy, 218 

in generalized and partial subgroups, and in those with LMNA or BSCL2 mutations, but not 219 

PPARG or AGPAT2 mutations (Level 3 evidence, Supplementary Data 3, Figure 2). Liver 220 

outcomes reported were too heterogeneous to analyse in aggregate.  Only a single adverse 221 

event, namely hypoglycemia, was reported. 222 

 223 

Thiazolidinedione treatment showed variable efficacy in limited studies 224 

We next addressed the evidence of risks and benefits of thiazolidinediones (TZDs) in 225 

patients with lipodystrophy. We were specifically interested in any evidence of a greater or 226 

lesser response in partial lipodystrophy caused by PPARG variants than in other lipodystrophy 227 

subtypes, as TZDs are potent ligands for the product of the PPARG gene, the master regulator 228 

of adipocyte differentiation. The response to TZDs was described in only 13 people, however 229 

(12 FPLD, 1 CGL) 24-34. TZDs were administered for 29±28 months (median 24, range 2-96).  230 

TZD use was associated with improved A1c in aggregated lipodystrophy (least square mean 231 

reduction 2.2%) and in PPARG-related but not LMNA-related partial lipodystrophy (Level 4 232 

evidence, Supplementary Data 3, Figure 3).  Serum triglyceride concentration decreased in 233 

aggregated lipodystrophy and in those with LMNA-related but not PPARG-related partial 234 
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lipodystrophy (Level 4 evidence, Supplementary Data 3, Figure 3). No adverse events were 235 

reported. 236 

 237 

rhIGF-1 treatment in INSR-related IR was associated with improvement in A1c 238 

Our last specific question related to the risks (e.g. tumors, hypoglycemia, cardiac 239 

hypertrophy, other soft tissue overgrowth) and benefits (assessed by A1c) of recombinant 240 

human IGF-1 (rhIGF-1) or IGF-1/IGFBP3 composite in patients with pathogenic INSR variants. 241 

The response to rhIGF-1 was described in 17 people with pathogenic INSR variants for a mean 242 

of 45±81 months (median 9, range 1-288) 35-46. In INSR-related IR, we found that use of rhIGF-243 

1, alone or as a composite with IGFBP3, was associated with improvement in A1c, and this 244 

was true also in subgroups with monoallelic and biallelic variants (1.5 to 2% least square mean 245 

reduction, Level 4 evidence, Supplementary Data 3, Figure 4). One instance of increased soft 246 

tissue overgrowth and two episodes of hypoglycemia was reported.  247 

 248 

Many questions about genotype-stratified treatment were not addressed 249 

While many other interesting and clinically relevant questions arise about other 250 

potential genotype-specific responses to therapy in monogenic IR, the small size or absence 251 

of other genotype by treatment groups precluded the drawing of conclusions about risks and 252 

benefits, including for very widely used medications such as metformin 26,47-49, newer agents 253 

commonly used in type 2 diabetes including SGLT2 inhibitors 50,51 and GLP1 agonists, and non 254 

pharmacologic interventions such as bariatric surgery 52-54. 255 

 256 

Discussion 257 
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Thirty-five years since INSR mutations were identified in extreme IR 55,56, and 23 years 258 

since the first monogenic cause of lipodystrophy was reported 57, many different forms of 259 

monogenic IR are known 1-3,58. These are associated with substantial early morbidity and 260 

mortality, ranging from death in infancy to accelerated complications of diabetes and fatty 261 

liver disease in adulthood, depending on the genetic subtype. Several opportunities for 262 

genotype-guided, targeted treatment are suggested by the causal genes, and so we set out 263 

to review the current evidence guiding treatment of monogenic IR stratified by genetic 264 

aetiology. We found a paucity of high-quality evidence (all level 3 to 4). No controlled trials of 265 

any intervention were identified, and there was substantial heterogeneity of study 266 

populations and intervention regimens, even for the same interventional agent. 267 

The evidence which we did find, from a small number of uncontrolled experimental 268 

studies, augmented by case series and numerous case reports, suggest that metreleptin 269 

offers metabolic benefits across different lipodystrophy subtypes, in keeping with its licensing 270 

for use in some patients with lipodystrophy in both Europe and the USA.  Notably, the 271 

evidence base considered by licensing authorities was larger than the one we present, 272 

including many studies of phenotypically ascertained lipodystrophy that included acquired or 273 

idiopathic disease. In contrast we have addressed solely individuals with lipodystrophy caused 274 

by variation in a single gene. The limited data we identified do not clearly support differential 275 

effects among different monogenic lipodystrophy subgroups, but for many subtypes numbers 276 

reported are very small. Moreover, although responses appear comparable for partial and 277 

generalised lipodystrophy, this is highly likely to reflect selection bias in studies of partial 278 

lipodystrophy towards those with more severe metabolic complications and lower baseline 279 

serum leptin concentrations. 280 
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A clear opportunity for precision diabetes therapy in monogenic IR is offered by the IR 281 

and lipodystrophy caused by mutations in PPARG, which encodes the target for 282 

thiazolidinediones (TZDs) such as pioglitazone 59,60. PPARG is a nuclear receptor that serves as 283 

the master transcriptional driver of adipocyte differentiation, and so as soon as PPARG 284 

mutations were identified to cause severe IR, there was interest in the potential of TZDs as 285 

specific treatments. Although we found small scale evidence supporting greater A1c 286 

reduction with TZDs in PPARG vs LMNA-related lipodystrophy, only 5 patients with PPARG-287 

related lipodystrophy in whom TZD effects were clearly described were reported, and 288 

responses were inconsistent. Thus, it remains unclear whether people with IR due to PPARG 289 

variants are more or indeed less sensitive to TZDs than people with other forms of 290 

lipodystrophy. Loss-of-function PPARG mutations are the second commonest cause of familial 291 

partial lipodystrophy 2, and the function of coding missense variants in PPARG has been 292 

assayed systematically to accelerate genetic diagnosis 61, so the opportunity to test genotype-293 

related therapy in PPARG-related IR seems particularly tractable in future. 294 

Other obvious questions about targeted treatment of monogenic, lipodystrophic IR 295 

are not addressed by current evidence. Important examples relate to the risks and benefits 296 

of treatments used in type 2 diabetes such as GLP-1 agonists and SGLT2 inhibitors.  It is 297 

rational to suppose that these medications, which decrease weight as well as improving 298 

glycaemia in those with raised BMI and diabetes, may also be efficacious in lipodystrophy 299 

even where BMI is normal or only slightly raised. This is because in both situations adipose 300 

storage capacity is exceeded, leading to fat failure. It is the offloading of overloaded adipose 301 

tissue, rather than the baseline BMI/adipose mass, which underlies the efficacy of therapy. 302 

However, GLP-1 agonists are contraindicated in those with prior pancreatitis, while SGLT2 303 

inhibitor use can be complicated by diabetic ketoacidosis. In untreated lipodystrophy 304 
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pancreatitis is common, yet this is due to hypertriglyceridaemia, which is likely to be improved 305 

by GLP-1 agonist use, while excessive supply of free fatty acids to the liver may promote 306 

ketogenesis. Thus, assessment of both classes of drug in lipodystrophy and its genetic 307 

subgroups will be important to quantify risks and benefits, which may be distinct to those in 308 

obesity-related diabetes. 309 

A further question we prespecified related to the use of rhIGF1 in people with severe 310 

IR due to INSR mutations. This use of rhIGF-1 was first described in recessive INSR defects in 311 

the early 1990s 44, and several studies of rhIGF-1 therapy of duration less than 28 days in 312 

people with INSR mutations have provided proof of concept for acute metabolic benefits 313 

(summarized in 38). This use of rhIGF-1 is based on the rationale that IGF-1 activates a receptor 314 

and signalling pathway very closely similar to those activated by insulin. Based on case 315 

reports, case series and narrative reviews, rhIGF-1 is now commonly used in neonates with 316 

extreme IR due to biallelic INSR mutations, although, unlike metreleptin in lipodystrophy, this 317 

use is still unlicensed. Our review of published data, which was limited to durations of 318 

intervention greater than 28 days, is consistent with glycaemic benefits of rhIGF-1, alone or 319 

in composite form with its binding protein IGFBP3, in people with INSR mutations. 320 

Nevertheless, such studies are challenging to interpret and are potentially fraught with bias 321 

of different types, particularly publication bias favouring positive outcomes. Responses to 322 

rhIGF1 are also challenging to determine in uncontrolled studies as small differences in 323 

residual function of mutated receptors can have substantial effects on the severity and 324 

natural history of the resulting IR, yet relatively few INSR mutations have been studied 325 

functionally. This underlines the narrow nature of, and substantial residual uncertainty in, the 326 

evidence base for use of rhIGF-1 in monogenic IR.   327 
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There are several reasons why important questions about precision treatment of 328 

monogenic IR have not been settled. Although severe autosomal recessive IR is usually 329 

detected in infancy, commoner dominant forms of monogenic IR are often diagnosed 330 

relatively late, often only after years of management based on presumptive diagnoses of type 331 

2 or sometimes type 1 diabetes. Initial management as type 2 diabetes means that by the 332 

time a clinical and then genetic diagnosis is made, most patents have been treated with 333 

agents such as metformin, and increasingly SGLT2 inhibitors or GLP-1 agonists, outside trial 334 

settings. It is not clear that harm is caused by such use of drugs with well-established safety 335 

profiles and efficacy in type 2 diabetes, but the lack of systematic data gathering precludes 336 

identification of specific drug-genotype interactions. Moreover, because attempts to gather 337 

evidence for monogenic IR treatment has tended to focus on high-cost adjunctive therapies 338 

such as metreleptin, the evidence base for their use is better developed, although controlled 339 

trials are lacking. Licensing of high-cost treatments such as metreleptin in lipodystrophy, 340 

while effects of many more commonly used, cheaper drugs with well-established safety 341 

profiles lack formal testing in monogenic IR is potentially problematic, skewing incentives and 342 

guidelines towards expensive therapy before optimal treatment algorithms have been 343 

established. 344 

Other challenges in conducting trials in monogenic IR arise from the exquisite 345 

sensitivity of IR to exacerbating factors such as puberty, diet, and energy balance.  This creates 346 

a signal to noise problem particularly problematic in uncontrolled studies, in which non-347 

pharmacological components of interventions such as increased support for behavioural 348 

change may confound attribution of beneficial outcomes to pharmacological agents tested. 349 

The key question now is how the evidence base for managing monogenic severe IR 350 

can be improved in the face of constraints in studying rare, clinically heterogeneous, and 351 
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geographically dispersed patients who are often diagnosed late with a condition that is 352 

exquisitely environmentally sensitive. Growing interest in and development of methodologies 353 

for clinical trials in rare disease 62, including Bayesian methodologies 63,64, and hybrid single- 354 

and multi-site designs 65 offer hope for future filling of evidence gaps. One important and 355 

pragmatic opportunity arises from the development of large regional, national and 356 

international networks and registries for lipodystrophy (e.g. the Europe-based ECLip registry 357 

66), allied to emergence of randomised registry-based trial (RRT) methodology 67,68.  RRTs have 358 

attracted increasing interest in several disease areas and are particularly suitable for 359 

evaluation of agents with well-established safety profiles. When a simple randomisation tool 360 

is deployed in the context of a registry, RRTs can offer rapid, cost-effective recruitment and 361 

high external validity (i.e. relevance to real world practice). In monogenic IR this would permit 362 

questions to be addressed about optimal usage of different common medications in different 363 

genetic subgroups, including the order of introduction of therapies, and their optimal 364 

combinations. The quality of such studies will critically rely on good registry design and quality 365 

and completeness of data capture 67,68. 366 

In summary, severe monogenic IR syndromes are clinically and genetically 367 

heterogeneous, with high early morbidity and mortality. However, despite opportunities for 368 

targeted therapy of some monogenic subgroups based on the nature of the causal gene 369 

alteration, the evidence for genotype-stratified therapy is weak. This is in part because of the 370 

rarity and frequent late diagnosis of monogenic IR, but also because therapeutic research to 371 

date has focused largely on phenotypically ascertained cross cutting diagnoses such as 372 

lipodystrophy. We suggest that approaches such as RRTs hold the best hope to answer some 373 

of the persisting major questions about precision treatment in monogenic IR. 374 

 375 
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Table 1: Summary characteristics of included studies. 697 
*Based on NHLBI quality assessment tool; #Numbers in brackets are for 698 

partial lipodystrophy/generalised lipodystrophy/ insulin receptor 699 
individuals respectively. Abbreviations: rhIGF-1, recombinant human 700 
insulin-like growth factor 1; IGFBP3, insulin-like growth factor binding 701 

protein 3; SGLT2i, sodium-glucose co-transporter-2 inhibitor 702 
 703 

  704 

Study types Number of studies 
Case reports 23 
Non-randomised 
experimental 
study 

10 

Case series 8 
Study Quality* Number of studies 

Good 0 
Fair 15 
Poor 30 

Phenotypes Number of participants 
Partial 
lipodystrophy 

90  
(72 LMNA, 15 PPARG, 2 PLIN1, 1 PIK3R1) 

Generalised 
lipodystrophy 

56  
(21 AGPAT2, 21 BSCL2, 1 PTRF, 2 LMNA) 

Insulin receptor 19 (7 Monoallelic, 12 Biallelic) 
Intervention Number of participants 

Metreleptin 111 (71/40/0) 
rhIGF-1 or  
rhIGF-1/IGFBP3 
composite 

17 (0/0/17) 

Thiazolidinedione 13 (12/1/0) 
Metformin 5 (2/1/2) 
Bariatric surgery 4 (4/0/0) 
SGLT2i 2 (1/1/0) 
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Figure Titles and Legends 705 

 706 

Figure 1 Title: PRISMA diagram 707 

Figure 1 Legend: PRISMA flow diagram of publications evaluated based on the search 708 

strategy. 709 

 710 

Figure 2 Title: Effects of metreleptin in monogenic forms of lipodystrophy  711 

Figure 2 Legend: Least square mean change in (a) Hemoglobin A1c (A1c), (b) Log10 712 

serum triglyceride concentration and (c) Body Mass Index (BMI) in patients with partial 713 

lipodystrophy, generalized lipodystrophy, all forms of lipodystrophy, and subgroups with 714 

PPARG, LMNA, BSCL2, and AGPAT2 mutations.  Error bars represent 95% confidence 715 

intervals.  N=64, 38, 102, 12, 52, 17, and 20 for change in A1c in partial lipodystrophy, 716 

generalized lipodystrophy, all lipodystrophy, PPARG, LMNA, BSCL2, and AGPAT2-717 

associated lipodystrophy, respectively. N=66, 40, 106, 12, 54, 19, and 20 for change in 718 

log10 triglycerides in partial lipodystrophy, generalized lipodystrophy, all lipodystrophy, 719 

PPARG, LMNA, BSCL2, and AGPAT2-associated lipodystrophy, respectively. N=47, 14, 61, 720 

10, 35, 8, and 7 for change in BMI in partial lipodystrophy, generalized lipodystrophy, all 721 

lipodystrophy, PPARG, LMNA, BSCL2, and AGPAT2-associated lipodystrophy, 722 

respectively. 723 

 724 

Figure 3 Title: Title: Effects of thiazolidinediones in monogenic forms of lipodystrophy  725 

Figure 3 Legend: Least square mean change in (a) Hemoglobin A1c (A1c), (b) Log10 726 

serum triglyceride concentration and (c) Body Mass Index (BMI) in patients with partial 727 

lipodystrophy, generalized lipodystrophy, all forms of lipodystrophy, and subgroups with 728 
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PPARG, and LMNA mutations. Error bars represent 95% confidence intervals. N=5, 5, 729 

and 10 for change in A1c and change in log10 triglycerides in PPARG, LMNA, and all 730 

lipodystrophy, respectively. N=1, 5, and 6 for change in BMI in PPARG, LMNA, and all 731 

lipodystrophy, respectively. 732 

 733 

Figure 4 Title: Effects of recombinant human Insulin-like Growth Factor-1 (rhIGF) alone 734 

or in combination with Insulin-like Growth Factor Binding Protein-3 (IGFBP3) in 735 

patients with INSR mutations  736 

Figure 4 Legend: Least square mean change in hemoglobin A1c (A1c), in all patients with 737 

INSR mutations, and in subgroups with biallelic and monoallelic mutations. Error bars 738 

represent 95% confidence intervals.  N=7, 6, and 13 for biallelic, monoallelic, and all 739 

INSR mutations. 740 

 741 

  742 
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