

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Genotype-stratified treatment for monogenic insulin resistance: a systematic review

Systematic review
Citation for published version:
Semple, RK, Patel, KA, Auh, S, Tobias, DK, Merino, J, Ahmad, A, Aiken, C, Benham, JL, Bodhini, D, Clark, AL, Colclough, K, Corcoy, R, Cromer, SJ, Duan, D, Felton, JL, Francis, EC, Gillard, P, Gingras, V, Gaillard, P, Haider, E, Hughes, A, Ikle, JM, Jacobsen, LM, Kahkoska, AR, Kettunen, JLT, Kreienkamp, RJ, Lim, L-L, Männistö, JME, Massey, R, Mclennan, N-M, Miller, RG, Morieri, ML, Most, J, Naylor, RN, Ozkan, B, Patel, KA, Pilla, SJ, Prystupa, K, Raghaven, S, Rooney, MR, Schön, M, Semnani-Azad, Z, Sevilla-Gonzalez, M, Svalastoga, P, Takele, WW, Tam, CH-T, Thuesen, ACB, Tosur, M, Wallace, AS, Wang, CC, Wong, JJ, Yamamoto, JM, Young, K, Amouyal, C, Andersen, MK, Bonham, MP, Chen, M, Cheng, F, Chikowore, T, Chivers, SC, Clemmensen, C, Dabelea, D, Dawed, AY, Deutsch, AJ, Dickens, LT, Dimeglio, LA, Dudenhöffer-Pteifer, M, Evans-Molina, C, Fernández-Balells, MM, Fitipadi, H, Fitzpatrick, SL, Gitelman, SE, Goodarzi, MO, Grieger, JA, Guasch-Ferré, M, Habibi, N, Hansen, T, Huang, C, Harris-Kawano, A, Ismail, HM, Hoag, B, Johnson, RK, Jones, AG, Koivula, RW, Leong, A, Leung, GKW, Libman, IM, Liu, K, Long, SA, Lowe, WL, Morton, RW, Motala, AA, Onengut-Gumuscu, S, Pankow, JS, Pathirana, M, Pazmino, S, Perez, D, Petrie, JR, Powe, CE, Quinteros, A, Jain, R, Ray, D, Ried-Larsen, M, Saeed, Z, Santhakumar, V, Kanbour, S, Sarkar, S, Monaco, GSF, Scholtens, DM, Selvin, E, Sheu, WH-H, Speake, C, Stanislawski, MA, Steenackers, N, Steck, AK, Stefan, N, Støy, J, Taylor, R, Tye, SC, Ukke, GG, Urazbayeva, M, Van der schueren, B, Vatier, C, Wentworth, JM, Hannah, W, White, SL, Yu, G, Zhang, Y, Zhou, SJ, Beltrand, J, Polak, M, Aukrust, I, De franco, E, Flanagan, SE, Maloney, KA, Mcgovern, A, Molnes, J, Nakabuye, M, Njølstad, PR, Pomares-Millan, H, Provenzano, M, Saint-Martin, C, Zhang, C, Zhu, Y, Auh, S, De souza, R, Fawcett, AJ, Gruber, C, Mekonnen, EG, Mixter, E, Sherifali, D, Eckel, RH, Nolan, JJ, Philipson, LH, Brown, RJ, Billings, LK, Boyle, K, Costacou, T, https://doi.org/10.1038/s43856-023-00368-9

Digital Object Identifier (DOI):

10.1038/s43856-023-00368-9

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Communications Medicine

- 1 Genotype-stratified treatment for monogenic insulin resistance: a systematic review
- 2
- 3 Robert K. Semple^{1,2}, Kashyap A. Patel^{3,4}, Sungyoung Auh⁵, ADA/EASD PMDI^{*}, Rebecca J. Brown⁵
- 4

5 Affiliations

- 6 ¹ Centre for Cardiovascular Science, Queen's Medical Research Institute, University of
- 7 Edinburgh, Edinburgh, UK.
- 8 ² MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh,
- 9 UK
- ³ Department of Clinical and Biomedical Sciences, University of Exeter Medical School,
- 11 Exeter, Devon, UK.
- ⁴ Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter,
- 13 UK.
- ⁵ National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,
- 15 Bethesda, MD, USA.
- ^{*} A list of authors and their affiliations appears at the end of the paper
- 17

18 Correspondence

- 19 Rebecca J. Brown, MD, MHSc
- 20 Building 10-CRC, Room 6-5942
- 21 10 Center Drive
- 22 Bethesda, MD 20892
- 23 Email: brownrebecca@niddk.nih.gov
- 24 Voicemail: 301-594-0609
- 25 Fax: 301-480-0365
- 26

27 Keywords

- 28 Precision Medicine, Diabetes, Genetics, Insulin Resistance, Lipodystrophy, Insulin Receptor,
- 29 Metreleptin, Leptin, thiazolidinediones, Insulin-like growth factor-1
- 30

31 Running Title

- 32 Precision Treatment of Monogenic Insulin Resistance
- 33
- 34 Word counts Abstract: 262 words; Main Text: 3,591 words

- 35 Abstract
- 36

Background: Monogenic insulin resistance (IR) includes lipodystrophy and disorders of insulin
 signalling. We sought to assess effects of interventions in monogenic IR, stratified by genetic
 aetiology.

40 **Methods:** Systematic review using PubMed, MEDLINE and Embase (1 January 1987 to 23 June 2021).

Studies reporting individual-level effects of pharmacologic and/or surgical interventions in monogenic
IR were eligible. Individual data were extracted and duplicates removed. Outcomes were analysed for
each gene and intervention, and in aggregate for partial, generalised and all lipodystrophy.

44 Results: 10 non-randomised experimental studies, 8 case series, and 23 case reports meet inclusion 45 criteria, all rated as having moderate or serious risk of bias. Metreleptin use is associated with lowering 46 of triglycerides and hemoglobin A1c (HbA1c) in all lipodystrophy (n=111), partial (n=71) and 47 generalised lipodystrophy (n=41)), and in LMNA, PPARG, AGPAT2 or BSCL2 subgroups (n=72,13,21 and 48 21 respectively). Body Mass Index (BMI) is lowered in partial and generalised lipodystrophy, and in 49 LMNA or BSCL2, but not PPARG or AGPAT2 subgroups. Thiazolidinediones are associated with 50 improved HbA1c and triglycerides in all lipodystrophy (n=13), improved HbA1c in PPARG (n=5), and 51 improved triglycerides in LMNA (n=7). In INSR-related IR, rhIGF-1, alone or with IGFBP3, are associated 52 with improved HbA1c (n=17). The small size or absence of other genotype-treatment combinations 53 preclude firm conclusions.

54 Conclusions: The evidence guiding genotype-specific treatment of monogenic IR is of low to very low 55 quality. Metreleptin and Thiazolidinediones appear to improve metabolic markers in lipodystrophy, 56 and rhIGF-1 appears to lower HbA1c in INSR-related IR. For other interventions there is insufficient 57 evidence to assess efficacy and risks in aggregated lipodystrophy or genetic subgroups.

58

59 Plain Language Summary

60 The hormone insulin stimulates nutrient uptake from the bloodstream into tissues. In insulin

61 resistance (IR), this action is blunted. Some rare gene alterations cause severe IR, diabetes that is

62	difficult to control, and early complications. Many treatments have been suggested, but reliable
63	evidence of their risks and benefits is sparse. We analysed all available reports describing treatment
64	outcomes in severe IR. We found that the evidence is of low to very low quality overall. Injections of
65	leptin, a hormone from fat tissue, or thiazolidinedione tablets that increase fat tissue both appear to
66	improve diabetes control in people with reduced ability to make fat tissue. Injections of another
67	treatment, insulin-like growth factor, appear to improve diabetes control in people with direct
68	blockage of insulin action. There is a pressing need to improve evidence for treatment in these rare
69	and severe conditions.

70 Introduction

Diabetes caused by single gene changes is highly heterogeneous in molecular aetiopathogenesis. It may be grouped into disorders featuring primary failure of insulin secretion, and disorders in which insulin resistance (IR), often severe, predates secondary failure of insulin secretion and diabetes. Monogenic IR is itself heterogeneous, encompassing primary lipodystrophy syndromes, primary disorders of insulin signalling, and a group of conditions in which severe IR is part of a more complex developmental syndrome ¹.

77 Monogenic IR is rare but underdiagnosed. The commonest subgroup is formed by 78 genetic lipodystrophy syndromes ^{2,3}. Recent analysis of a large clinical care cohort unselected 79 for metabolic disease suggested a clinical prevalence of lipodystrophy of around 1 in 20,000, 80 with a prevalence of plausible lipodystrophy-causing genetic variants of around 1 in 7,000⁴. 81 Monogenic IR is important to recognise, because affected patients are at risk not only of 82 micro- and macrovascular complications of diabetes, but also of complications such as 83 dyslipidemia, pancreatitis, and steatohepatitis, especially in lipodystrophy syndromes ⁵. Non-84 metabolic complications specific to individual gene defects may also occur, including 85 hypertrophic cardiomyopathy and other manifestations of soft tissue overgrowth ³. Diabetes 86 is also commonly the sentinel presentation of a multisystem disorder, and recognition of 87 complex syndromes in a diabetes clinic may trigger definitive diagnostic testing.

The only therapy licensed specifically for monogenic IR is recombinant human methionyl leptin (metreleptin), with licensed indications encompassing a subset of patients with lipodystrophy and inadequate metabolic control. The current license in the USA is restricted to generalised lipodystrophy, but in Europe it extends to some patients with partial lipodystrophy. A substantial proportion of the body of evidence considered in licensing

addressed patients ascertained by presence of clinical lipodystrophy, and the role of genetic
stratification in precision treatment of lipodystrophy has not been systematically addressed.
Many other medications and other treatment options are also widely used in monogenic IR,
although not licensed for that specific subgroup. Such use draws on the evidence base and
treatment algorithms developed for type 2 diabetes. Several forms of monogenic IR have
molecular and/or clinical attributes that suggest potential precision approaches to treatment.

99 We sought now to undertake a systematic review of the current evidence guiding 100 treatment of monogenic IR stratified by genetic aetiology, to assess evidence for differential 101 responses to currently used therapies, to establish gaps in evidence, and to inform future 102 studies. This systematic review is written on behalf of the American Diabetes Association 103 (ADA)/European Association for the Study of Diabetes (EASD) Precision Medicine in Diabetes Initiative (PMDI) as part of a comprehensive evidence evaluation in support of the 104 2^{nd} International Consensus Report on Precision Diabetes Medicine ⁶. The PMDI was 105 106 established in 2018 by the ADA in partnership with the EASD to address the burgeoning need 107 for better diabetes prevention and care through precision medicine ⁷.

108 Our analyses show that metreleptin and thiazolidinediones appear to lower HbA1c,

triglycerides, and body weight in patients with lipodystrophy of all genotypes, and rhIGF-1 appears

- to lower HbA1c in patients with *INSR*-related IR. For other interventions there is insufficient
- 111 evidence to assess efficacy and risks.

112

113 Methods

114 Inclusion Criteria and Search Methodology

115To assess treatment of severe IR of known monogenic aetiology, with or without116diabetes mellitus, including generalised and partial lipodystrophy and genetic disorders of the

insulin receptor, we developed, registered and followed a protocol for a systematic review
(PROSPERO ID CRD42021265365; registered July 21, 2021)⁸. The study was reported in
accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines. Filtering and selection of studies for data extraction were recorded using
the Covidence platform (<u>https://www.covidence.org</u>, Melbourne, Australia).

122 We searched PubMed, MEDLINE and Embase from 1987 (the year before 123 identification of the first monogenic aetiology of IR) to June 23, 2021 for potentially relevant 124 human studies in English. We used broad search terms designed to capture the heterogeneity 125 of monogenic IR and its treatments. We searched for studies addressing 1. Severe IR due to 126 variant(s) in a single gene OR 2. Congenital generalised or familial partial lipodystrophy due 127 to variant(s) in a single gene. We selected only studies that reported a treatment term, 128 including but not limited to mention of 1. Thiazolidinediones (TZD), 2. Metreleptin, 3. SGLT2 129 inhibitors, 4. GLP-1 analogues, 5. Bariatric surgery (all types), 6. Recombinant human IGF-1 or IGF-1/IGFBP3 composite, 7. U-500 insulin. No interventions were excluded in the primary 130 131 search. In addition to the automated search, we hand searched reference lists of relevant 132 review articles. Given the rarity of monogenic IR, no study types were excluded in the initial 133 search. We ultimately considered experimental studies, case reports, and case series. The full 134 search strategy is described in Supplementary Table 1.

Study selection for data extraction was performed in two phases, namely primary screening of title and abstract, then full text review of potentially eligible articles. Two authors independently evaluated eligibility, with discrepancies resolved by a third investigator. We excluded publications without original data, such as reviews, editorials, and comments, and those solely addressing severe IR or lipodystrophy of unknown or known non-monogenic aetiology, including HIV-related or other acquired lipodystrophies, or autoimmune insulin

receptoropathy (Type B insulin resistance). Studies in which no clear categorical or numerical
outcome of an intervention was reported, or in which interventions were administered for
less than 28 days were also excluded.

144

145 Data extraction and outcome assessments

One author extracted data from each eligible study using data extraction sheets. Data from each study was verified by all 3 authors to reach consensus. Data were extracted from text, tables, or figures. Study investigators were contacted for pertinent unreported data or additional details where possible, most commonly genetic aetiology of insulin resistance in reported patients, and outcome data.

151 Data extracted for each study included first author, publication year, country, details 152 of intervention, duration of follow-up, study design, and number of participants. Subject-153 level data were extracted for outcomes of interest, including sex, genetic cause of severe 154 insulin resistance (gene name, mono- vs biallelic INSR pathogenic variant), phenotypic details 155 of severe IR/lipodystrophic subtype (generalised vs partial lipodystrophy; associated 156 syndromic features). Subject level outcome data for were extracted prior to and after the 157 longest-reported exposure to the intervention of interest for hemoglobin A1c (A1c), body 158 mass index, serum triglyceride, ALT, or AST concentration, any index of liver size or lipid 159 content, and total daily insulin dose. Potential adverse effects of interventions were recorded, 160 including urinary tract infection, genital candidiasis, hypoglycemia, excessive weight loss, 161 pancreatitis, soft tissue overgrowth, and tumor formation.

162

163 Risk of bias and certainty of evidence assessment

164	Quality of extracted case reports and case series was assessed using NIH Study
165	Quality Assessment Tools ⁹ by a single reviewer and verified by 2 additional reviewers.
166	Grading of overall evidence for specific research questions was undertaken as detailed in ¹⁰ .
167	
168	Statistics and Reproducibility
169	Extracted data were managed using Covidence and analysed with SAS version 9.4.
170	Pooled analysis was undertaken for all combinations of genotype and intervention for which
171	sufficient numbers were reported, as well as for aggregated lipodystrophies, and
172	generalized and partial subgroups of lipodystrophy. Generalized Estimating Equation
173	models were used with time as a fixed factor and study as a random factor to examine
174	treatment effects. Serum triglyceride concentrations were analyzed with and without log
175	transformation. Data were summarized using estimated least-squared means with
176	corresponding 95% confidence intervals.
177	
178	Results
179	Identification of eligible studies
180	Initial searching identified 2,933 studies, to which 117 were added from the
181	bibliography reviews. 256 articles remained after screening of titles and abstracts, and 44
182	after full text screening (Figure 1).
183	
184	Included studies addressed limited interventions and most had a high risk of bias
185	The 44 studies analysed, and assessment of their quality are summarised in Table 1
186	and detailed in Supplementary Data 1. Study quality was assessed as being fair in 15 cases
187	and poor in 29 cases, including all case reports. This was primarily due to high risk of bias,

188 particularly related to lack of control group for all studies. Three of the 44 studies included in 189 further analysis included only individuals already described in other reports and were 190 discarded, leaving 41 studies for final analysis. These comprised 10 non-controlled 191 experimental studies, 8 case series and 23 individual case reports (Table 1). No controlled 192 trials were found. Individuals reported in the studies included 90 with partial lipodystrophy 193 (72 due to LMNA mutation and 15 due to PPARG mutation), 42 with generalized lipodystrophy 194 (21 AGPAT2, 21 BSCL2, 2 LMNA), and 19 with IR due to INSR mutation(s). Among the 195 interventions described, only the responses to metreleptin (111 recipients), 196 thiazolidinediones (13 recipients) and rhIGF-1 (alone or as a composite with IGFBP3) (17 197 recipients) were described in more than 5 cases (Table 1). This meant that for the large 198 preponderance of possible genotype-treatment combinations no specific data were 199 recovered (Supplementary Table 2). Full outcome data extracted are summarised in 200 Supplementary Data 2, and subject-level data are shown in Supplementary Figures 1 through 201 8 with raw data provided in Supplementary Data 2.

202

203 Metreleptin treatment was associated with improved metabolic control in lipodystrophy

204 In our registered systematic review plan we posed several subquestions about 205 treatment of monogenic IR subtypes that we felt were tractable. The first related to the risks 206 and benefits (assessed by side effects, A1c, serum triglyceride concentration, body mass index 207 (BMI), and indices of fatty liver) of metreleptin in patients with different monogenic subtypes 208 of lipodystrophy. The response to metreleptin was described in 111 people (71 with partial 209 lipodystrophy, 40 with generalized lipodystrophy) ¹¹⁻²³. Metreleptin was administered for 210 19±20 months (median 12, range 1-108) and was associated with lowering of A1c in 211 aggregated lipodystrophy, in generalized and partial subgroups, and in all genetic subgroups 212 for whom sufficient patients were reported, namely those with LMNA, PPARG, AGPAT2 and 213 BSCL2 mutations (0.5 to 1.5% least square mean reduction) (Level 3 evidence, Supplementary Data 3, Figure 2). Metreleptin treatment was also associated with lowering of serum 214 215 triglyceride concentration in aggregated lipodystrophy, in generalized and partial subgroups, 216 and in those with LMNA, PPARG, AGPAT2 and BSCL2 mutations (92 to 1760 mg/dL least 217 square mean reduction for analyses of untransformed data) (Level 3 evidence, 218 Supplementary Data 3, Figure 2). BMI was lower after treatment in aggregated lipodystrophy, in generalized and partial subgroups, and in those with LMNA or BSCL2 mutations, but not 219 220 PPARG or AGPAT2 mutations (Level 3 evidence, Supplementary Data 3, Figure 2). Liver 221 outcomes reported were too heterogeneous to analyse in aggregate. Only a single adverse 222 event, namely hypoglycemia, was reported.

223

224 Thiazolidinedione treatment showed variable efficacy in limited studies

225 We next addressed the evidence of risks and benefits of thiazolidinediones (TZDs) in 226 patients with lipodystrophy. We were specifically interested in any evidence of a greater or 227 lesser response in partial lipodystrophy caused by PPARG variants than in other lipodystrophy 228 subtypes, as TZDs are potent ligands for the product of the *PPARG* gene, the master regulator 229 of adipocyte differentiation. The response to TZDs was described in only 13 people, however 230 (12 FPLD, 1 CGL) ²⁴⁻³⁴. TZDs were administered for 29±28 months (median 24, range 2-96). 231 TZD use was associated with improved A1c in aggregated lipodystrophy (least square mean 232 reduction 2.2%) and in PPARG-related but not LMNA-related partial lipodystrophy (Level 4 233 evidence, Supplementary Data 3, Figure 3). Serum triglyceride concentration decreased in 234 aggregated lipodystrophy and in those with LMNA-related but not PPARG-related partial

lipodystrophy (Level 4 evidence, Supplementary Data 3, Figure 3). No adverse events werereported.

237

238 rhIGF-1 treatment in INSR-related IR was associated with improvement in A1c

239 Our last specific question related to the risks (e.g. tumors, hypoglycemia, cardiac 240 hypertrophy, other soft tissue overgrowth) and benefits (assessed by A1c) of recombinant 241 human IGF-1 (rhIGF-1) or IGF-1/IGFBP3 composite in patients with pathogenic *INSR* variants. The response to rhIGF-1 was described in 17 people with pathogenic *INSR* variants for a mean 242 of 45±81 months (median 9, range 1-288) ³⁵⁻⁴⁶. In INSR-related IR, we found that use of rhIGF-243 244 1, alone or as a composite with IGFBP3, was associated with improvement in A1c, and this 245 was true also in subgroups with monoallelic and biallelic variants (1.5 to 2% least square mean 246 reduction, Level 4 evidence, Supplementary Data 3, Figure 4). One instance of increased soft 247 tissue overgrowth and two episodes of hypoglycemia was reported.

248

249 Many questions about genotype-stratified treatment were not addressed

While many other interesting and clinically relevant questions arise about other potential genotype-specific responses to therapy in monogenic IR, the small size or absence of other genotype by treatment groups precluded the drawing of conclusions about risks and benefits, including for very widely used medications such as metformin ^{26,47-49}, newer agents commonly used in type 2 diabetes including SGLT2 inhibitors ^{50,51} and GLP1 agonists, and non pharmacologic interventions such as bariatric surgery ⁵²⁻⁵⁴.

256

257 Discussion

Thirty-five years since *INSR* mutations were identified in extreme IR ^{55,56}, and 23 years 258 259 since the first monogenic cause of lipodystrophy was reported ⁵⁷, many different forms of 260 monogenic IR are known ^{1-3,58}. These are associated with substantial early morbidity and 261 mortality, ranging from death in infancy to accelerated complications of diabetes and fatty 262 liver disease in adulthood, depending on the genetic subtype. Several opportunities for 263 genotype-guided, targeted treatment are suggested by the causal genes, and so we set out 264 to review the current evidence guiding treatment of monogenic IR stratified by genetic 265 aetiology. We found a paucity of high-quality evidence (all level 3 to 4). No controlled trials of 266 any intervention were identified, and there was substantial heterogeneity of study 267 populations and intervention regimens, even for the same interventional agent.

268 The evidence which we did find, from a small number of uncontrolled experimental 269 studies, augmented by case series and numerous case reports, suggest that metreleptin 270 offers metabolic benefits across different lipodystrophy subtypes, in keeping with its licensing 271 for use in some patients with lipodystrophy in both Europe and the USA. Notably, the 272 evidence base considered by licensing authorities was larger than the one we present, 273 including many studies of phenotypically ascertained lipodystrophy that included acquired or 274 idiopathic disease. In contrast we have addressed solely individuals with lipodystrophy caused 275 by variation in a single gene. The limited data we identified do not clearly support differential 276 effects among different monogenic lipodystrophy subgroups, but for many subtypes numbers 277 reported are very small. Moreover, although responses appear comparable for partial and 278 generalised lipodystrophy, this is highly likely to reflect selection bias in studies of partial 279 lipodystrophy towards those with more severe metabolic complications and lower baseline 280 serum leptin concentrations.

281 A clear opportunity for precision diabetes therapy in monogenic IR is offered by the IR 282 and lipodystrophy caused by mutations in PPARG, which encodes the target for 283 thiazolidinediones (TZDs) such as pioglitazone ^{59,60}. PPARG is a nuclear receptor that serves as 284 the master transcriptional driver of adipocyte differentiation, and so as soon as PPARG 285 mutations were identified to cause severe IR, there was interest in the potential of TZDs as 286 specific treatments. Although we found small scale evidence supporting greater A1c 287 reduction with TZDs in PPARG vs LMNA-related lipodystrophy, only 5 patients with PPARG-288 related lipodystrophy in whom TZD effects were clearly described were reported, and 289 responses were inconsistent. Thus, it remains unclear whether people with IR due to PPARG 290 variants are more or indeed less sensitive to TZDs than people with other forms of 291 lipodystrophy. Loss-of-function PPARG mutations are the second commonest cause of familial 292 partial lipodystrophy², and the function of coding missense variants in PPARG has been assayed systematically to accelerate genetic diagnosis ⁶¹, so the opportunity to test genotype-293 294 related therapy in *PPARG*-related IR seems particularly tractable in future.

295 Other obvious questions about targeted treatment of monogenic, lipodystrophic IR 296 are not addressed by current evidence. Important examples relate to the risks and benefits of treatments used in type 2 diabetes such as GLP-1 agonists and SGLT2 inhibitors. It is 297 298 rational to suppose that these medications, which decrease weight as well as improving 299 glycaemia in those with raised BMI and diabetes, may also be efficacious in lipodystrophy 300 even where BMI is normal or only slightly raised. This is because in both situations adipose 301 storage capacity is exceeded, leading to fat failure. It is the offloading of overloaded adipose 302 tissue, rather than the baseline BMI/adipose mass, which underlies the efficacy of therapy. 303 However, GLP-1 agonists are contraindicated in those with prior pancreatitis, while SGLT2 304 inhibitor use can be complicated by diabetic ketoacidosis. In untreated lipodystrophy

305 pancreatitis is common, yet this is due to hypertriglyceridaemia, which is likely to be improved 306 by GLP-1 agonist use, while excessive supply of free fatty acids to the liver may promote 307 ketogenesis. Thus, assessment of both classes of drug in lipodystrophy and its genetic 308 subgroups will be important to quantify risks and benefits, which may be distinct to those in 309 obesity-related diabetes.

310 A further question we prespecified related to the use of rhIGF1 in people with severe 311 IR due to INSR mutations. This use of rhIGF-1 was first described in recessive INSR defects in 312 the early 1990s ⁴⁴, and several studies of rhIGF-1 therapy of duration less than 28 days in 313 people with INSR mutations have provided proof of concept for acute metabolic benefits 314 (summarized in ³⁸). This use of rhIGF-1 is based on the rationale that IGF-1 activates a receptor 315 and signalling pathway very closely similar to those activated by insulin. Based on case reports, case series and narrative reviews, rhIGF-1 is now commonly used in neonates with 316 317 extreme IR due to biallelic INSR mutations, although, unlike metreleptin in lipodystrophy, this 318 use is still unlicensed. Our review of published data, which was limited to durations of 319 intervention greater than 28 days, is consistent with glycaemic benefits of rhIGF-1, alone or 320 in composite form with its binding protein IGFBP3, in people with INSR mutations. 321 Nevertheless, such studies are challenging to interpret and are potentially fraught with bias 322 of different types, particularly publication bias favouring positive outcomes. Responses to 323 rhIGF1 are also challenging to determine in uncontrolled studies as small differences in 324 residual function of mutated receptors can have substantial effects on the severity and 325 natural history of the resulting IR, yet relatively few INSR mutations have been studied 326 functionally. This underlines the narrow nature of, and substantial residual uncertainty in, the 327 evidence base for use of rhIGF-1 in monogenic IR.

328 There are several reasons why important questions about precision treatment of 329 monogenic IR have not been settled. Although severe autosomal recessive IR is usually 330 detected in infancy, commoner dominant forms of monogenic IR are often diagnosed 331 relatively late, often only after years of management based on presumptive diagnoses of type 332 2 or sometimes type 1 diabetes. Initial management as type 2 diabetes means that by the 333 time a clinical and then genetic diagnosis is made, most patents have been treated with 334 agents such as metformin, and increasingly SGLT2 inhibitors or GLP-1 agonists, outside trial 335 settings. It is not clear that harm is caused by such use of drugs with well-established safety 336 profiles and efficacy in type 2 diabetes, but the lack of systematic data gathering precludes 337 identification of specific drug-genotype interactions. Moreover, because attempts to gather 338 evidence for monogenic IR treatment has tended to focus on high-cost adjunctive therapies 339 such as metreleptin, the evidence base for their use is better developed, although controlled 340 trials are lacking. Licensing of high-cost treatments such as metreleptin in lipodystrophy, 341 while effects of many more commonly used, cheaper drugs with well-established safety 342 profiles lack formal testing in monogenic IR is potentially problematic, skewing incentives and 343 guidelines towards expensive therapy before optimal treatment algorithms have been 344 established.

Other challenges in conducting trials in monogenic IR arise from the exquisite sensitivity of IR to exacerbating factors such as puberty, diet, and energy balance. This creates a signal to noise problem particularly problematic in uncontrolled studies, in which nonpharmacological components of interventions such as increased support for behavioural change may confound attribution of beneficial outcomes to pharmacological agents tested.

The key question now is how the evidence base for managing monogenic severe IR can be improved in the face of constraints in studying rare, clinically heterogeneous, and

352 geographically dispersed patients who are often diagnosed late with a condition that is 353 exquisitely environmentally sensitive. Growing interest in and development of methodologies for clinical trials in rare disease ⁶², including Bayesian methodologies ^{63,64}, and hybrid single-354 and multi-site designs ⁶⁵ offer hope for future filling of evidence gaps. One important and 355 356 pragmatic opportunity arises from the development of large regional, national and 357 international networks and registries for lipodystrophy (e.g. the Europe-based ECLip registry ⁶⁶), allied to emergence of randomised registry-based trial (RRT) methodology ^{67,68}. RRTs have 358 359 attracted increasing interest in several disease areas and are particularly suitable for 360 evaluation of agents with well-established safety profiles. When a simple randomisation tool 361 is deployed in the context of a registry, RRTs can offer rapid, cost-effective recruitment and 362 high external validity (i.e. relevance to real world practice). In monogenic IR this would permit 363 questions to be addressed about optimal usage of different common medications in different 364 genetic subgroups, including the order of introduction of therapies, and their optimal 365 combinations. The quality of such studies will critically rely on good registry design and quality 366 and completeness of data capture ^{67,68}.

367 In summary, severe monogenic IR syndromes are clinically and genetically 368 heterogeneous, with high early morbidity and mortality. However, despite opportunities for 369 targeted therapy of some monogenic subgroups based on the nature of the causal gene 370 alteration, the evidence for genotype-stratified therapy is weak. This is in part because of the 371 rarity and frequent late diagnosis of monogenic IR, but also because therapeutic research to 372 date has focused largely on phenotypically ascertained cross cutting diagnoses such as 373 lipodystrophy. We suggest that approaches such as RRTs hold the best hope to answer some 374 of the persisting major questions about precision treatment in monogenic IR.

375

376 Data availability

377 All data used in this review is available from publicly available and herein referenced sources.

378 A list of included studies is provided in Supplementary Data 1. All data generated or analyzed

- during this study are included in this published article and its supplementary information files.
- 380 Source data for the figures are available as Supplementary Data 2.

381

382 Competing interests

383 The authors declare the following competing interests: R.K.S. has received speaker fees from

384 Eli Lilly, Novo Nordisk, and Amryt. R. J. B. has received research support from Amryt, Third

385 Rock Ventures, Ionis, and Regeneron. K.A.P. and S.A. report no conflicts of interest.

386

387 Author Contributions

R.K.S., R.J.B., and K.A.P. researched data, wrote the manuscript, and reviewed and approved
the final manuscript. S.A. conducted statistical analyses and reviewed and approved the final
manuscript. Members of the ADA/EASD PMDI Consortium provided feedback on
methodology and reporting guidelines.

392

393 Acknowledgements

This research was funded in part, by the Wellcome Trust [Grant WT 210752 to RKS and WT 219606 to KAP]. For the purpose of open access, the author has applied a CCO Public Domain Dedication to any Author Accepted Manuscript version arising from this submission. RJB and SA are supported by the intramural research program of the National Institute of Diabetes and Digestive and Kidney Diseases. The ADA/EASD Precision Diabetes Medicine Initiative, within which this work was conducted, has received the following support: The Covidence

- 400 license was funded by Lund University (Sweden) for which technical support was provided by
- 401 Maria Björklund and Krister Aronsson (Faculty of Medicine Library, Lund University, Sweden).
- 402 Administrative support was provided by Lund University (Malmö, Sweden), University of
- 403 Chicago (IL, USA), and the American Diabetes Association (Washington D.C., USA). The Novo
- 404 Nordisk Foundation (Hellerup, Denmark) provided grant support for in-person writing group
- 405 meetings (PI: L Phillipson, University of Chicago, IL).

406 References

407 1 Bonnefond, A. & Semple, R. K. Achievements, prospects and challenges in precision 408 care for monogenic insulin-deficient and insulin-resistant diabetes. Diabetologia 65, 409 1782-1795 (2022). https://doi.org:10.1007/s00125-022-05720-7 Lim, K., Haider, A., Adams, C., Sleigh, A. & Savage, D. B. Lipodistrophy: a paradigm for 410 2 411 understanding the consequences of "overloading" adipose tissue. Physiol Rev 101, 412 907-993 (2021). https://doi.org:10.1152/physrev.00032.2020 413 3 Semple, R. K., Savage, D. B., Cochran, E. K., Gorden, P. & O'Rahilly, S. Genetic 414 syndromes of severe insulin resistance. Endocr Rev 32, 498-514 (2011). 415 https://doi.org:10.1210/er.2010-0020 416 4 Gonzaga-Jauregui, C. et al. Clinical and Molecular Prevalence of Lipodystrophy in an 417 Unascertained Large Clinical Care Cohort. Diabetes 69, 249-258 (2020). 418 https://doi.org:10.2337/db19-0447 419 5 Brown, R. J. et al. The Diagnosis and Management of Lipodystrophy Syndromes: A 420 Multi-Society Practice Guideline. J Clin Endocrinol Metab 101, 4500-4511 (2016). 421 https://doi.org:10.1210/jc.2016-2466 422 6 Deirdre K. Tobias, J. M., Abrar Ahmad, Catherine Aiken, Jamie L. Benham, 423 Dhanasekaran Bodhini, Amy L. Clark, Kevin Colclough, Rosa Corcoy, Sara J. Cromer, 424 Daisy Duan, Jamie L. Felton, Ellen C. Francis, Pieter Gillard, Véronique Gingras, Romy 425 Gaillard, Eram Haider, Alice Hughes, Jennifer M. Ikle, Laura M. Jacobsen, Anna R. 426 Kahkoska, Jarno L.T. Kettunen, Raymond J. Kreienkamp, Lee-Ling Lim, Jonna M.E. 427 Männistö, Robert Massey, Niamh-Maire Mclennan, Rachel G. Miller, Mario Luca 428 Morieri Jasper Most, Rochelle N. Naylor, Bige Ozkan Kashyap Amratlal Patel, Scott J. 429 Pilla, Katsiaryna Prystupa, Sridaran Raghaven, Mary R. Rooney, Martin Schön, Zhila 430 Semnani-Azad, Magdalena Sevilla-Gonzalez, Pernille Svalastoga Wubet Worku 431 Takele, Claudia Ha-ting Tam, Anne Cathrine B. Thuesen, Mustafa Tosur, Amelia S. 432 Wallace Caroline C. Wang, Jessie J. Wong, Jennifer M. Yamamoto, Katherine Young, 433 Chloé Amouyal Mette K. Andersen, Maxine P. Bonham, Mingling Chen, Feifei Cheng, 434 Tinashe Chikowore,-, Sian C Chivers, Christoffer Clemmensen, Dana Dabelea, Adem 435 Y. Dawed, Aaron J. Deutsch, Laura T. Dickens, Linda A. DiMeglio, Monika 436 Dudenhöffer-Pfeifer, Carmella Evans-Molina- María Mercè Fernández-Balsells Hugo 437 Fitipaldi, Stephanie L. Fitzpatrick, Stephen E. Gitelman, Mark O. Goodarzi Jessica A. 438 Grieger Marta Guasch-Ferré Nahal Habibi, Torben Hansen, Chuiguo Huang, Arianna 439 Harris-Kawano-, Heba M. Ismail, Benjamin Hoag Randi K. Johnson, Angus G. Jones 440 Robert W. Koivula, Aaron Leong, Gloria K.W. Leung, Ingrid M. Libman, Kai Liu, S. Alice 441 Long, William L. Lowe, Jr., Robert W. Morton, Ayesha A. Motala, Suna Onengut-442 Gumuscu, James S. Pankow, Maleesa Pathirana, Sofia Pazmino, Dianna Perez, John 443 R. Petrie, Camille E. Powe, Alejandra Quinteros, Rashmi Jain, Debashree Ray, Mathias 444 Ried-Larsen, Zeb Saeed, Vanessa Santhakumar, Sarah Kanbour, Sudipa Sarkar, 445 Gabriela S.F. Monaco, Denise M. Scholtens, Elizabeth Selvin, Wayne Huey-Herng 446 Sheu, Cate Speake, Maggie A. Stanislawski, Nele Steenackers, Andrea K. Steck, 447 Norbert Stefan, Julie Støy, Rachael Taylor, Sok Cin Tye Gebresilasea Gendisha Ukke, 448 Marzhan Urazbayeva, Bart Van der Schueren, Camille Vatier John M. Wentworth, 449 Wesley Hannah, Sara L. White, Gechang Yu, Yingchai Zhang, Shao J. Zhou, Jacques 450 Beltrand, Michel Polak, Ingvild Aukrust, Elisa de Franco, Sarah E. Flanagan, Kristin A. 451 Maloney, Andrew McGovern, Janne Molnes Mariam Nakabuye, Pål Rasmus Njølstad, 452 Hugo Pomares-Millan, Michele Provenzano, Cécile Saint-Martin, Cuilin Zhang, Yeyi

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467		Zhu, Sungyoung Auh, Russell de Souza, Andrea J Fawcett, Chandra Gruber, Eskedar Getie Mekonnen, Emily Mixter, Diana Sherifali, Robert H. Eckel, John J. Nolan, Louis H. Philipson, Rebecca J. Brown, Liana K. Billings, Kristen Boyle, Tina Costacou, John M. Dennis, Jose C. Florez, Anna L. Gloyn, Maria F. Gomez, Peter A. Gottlieb, Siri Atma W. Greeley, Kurt Griffin, Andrew T. Hattersley, Irl B. Hirsch, Marie-France Hivert, Korey K. Hood, Jami L. Josefson, Soo Heon Kwak, Lori M. Laffel, Siew S. Lim, Ruth J.F. Loos, Ronald C.W. Ma, Chantal Mathieu, Nestoras Mathioudakis, James B. Meigs, Shivani Misra, Viswanathan Mohan, Rinki Murphy, Richard Oram, Katharine R. Owen, Susan E. Ozanne, Ewan R. Pearson, Wei Perng, Toni I. Pollin, Rodica Pop- Busui, Richard E. Pratley, Leanne M. Redman, Maria J. Redondo, Rebecca M. Reynolds, Robert K. Semple, Jennifer L. Sherr, Emily K. Sims, Arianne Sweeting, Tiinamaija Tuomi, Miriam S. Udler, Kimberly K. Vesco, Tina Vilsbøll, Robert Wagner, Stephen S. Rich, Paul W. Franks Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine. <i>Nature</i> <i>Medicine</i> In press (2023). <u>https://doi.org/10.1038/s41591-023-</u>
468		<u>02502-5</u>
469	7	Nolan, J. J. et al. ADA/EASD Precision Medicine in Diabetes Initiative: An
470		International Perspective and Future Vision for Precision Medicine in Diabetes.
471		Diabetes Care 45 , 261-266 (2022). <u>https://doi.org:10.2337/dc21-2216</u>
472	8	Effects of pharmacologic and non-pharmacologic interventions on metabolic control
473		in severe insulin resistance due to lipodystrophy or genetic insulin receptoropathy,
474		< <u>https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=265365</u> >
475		(2021).
476	9	Study Quality Assessment Tools, < <u>https://www.nhlbi.nih.gov/health-topics/study-</u>
477		<u>quality-assessment-tools</u> > (
478	10	Sherifali, D. et al. Methods. Canadian journal of diabetes 42, S6-S9 (2018).
479		https://doi.org:https://doi.org/10.1016/j.jcjd.2017.10.002
480	11	Musso, C., Major, M. L., Andres, E. & Simha, V. Metreleptin Treatment in Three
481		Patients with Generalized Lipodystrophy. Clinical medicine insights. Case reports 9,
482		123-127 (2016). <u>https://doi.org:10.4137/CCRep.S40196</u>
483	12	Beltrand, J. et al. Resistance to leptin-replacement therapy in Berardinelli-Seip
484		congenital lipodystrophy: an immunological origin. Eur J Endocrinol 162, 1083-1091
485		(2010). <u>https://doi.org:10.1530/eje-09-1027</u>
486	13	Vatier, C. et al. Adherence with metreleptin therapy and health self-perception in
487		patients with lipodystrophic syndromes. Orphanet J Rare Dis 14, 177 (2019).
488		<u>https://doi.org:10.1186/s13023-019-1141-2</u>
489	14	Beltrand, J. et al. Metabolic correction induced by leptin replacement treatment in
490		young children with Berardinelli-Seip congenital lipoatrophy. Pediatrics 120 , e291-
491		296 (2007). <u>https://doi.org:10.1542/peds.2006-3165</u>
492	15	Chong, A. Y., Lupsa, B. C., Cochran, E. K. & Gorden, P. Efficacy of leptin therapy in the
493		different forms of human lipodystrophy. <i>Diabetologia</i> 53, 27-35 (2010).
494		https://doi.org:10.1007/s00125-009-1502-9
495	16	Maeda, M., Maeda, T., Ebihara, K. & Ihara, K. The long-term management of
496		congenital generalized lipodystrophy (Berardinelli-Seip syndrome): the clinical
497		manifestations of Japanese siblings for approximately 20 years. Clinical pediatric
498		endocrinology : case reports and clinical investigations : official journal of the

499		Japanese Society for Pediatric Endocrinology 28 , 139-145 (2019).
500		https://doi.org:10.1297/cpe.28.139
501	17	Ebihara, K. et al. Efficacy and safety of leptin-replacement therapy and possible
502		mechanisms of leptin actions in patients with generalized lipodystrophy. J Clin
503		Endocrinol Metab 92 , 532-541 (2007). <u>https://doi.org:10.1210/jc.2006-1546</u>
504	18	Ajluni, N., Dar, M., Xu, J., Neidert, A. H. & Oral, E. A. Efficacy and Safety of
505		Metreleptin in Patients with Partial Lipodystrophy: Lessons from an Expanded Access
506		Program. Journal of diabetes & metabolism 7 (2016). https://doi.org:10.4172/2155-
507		<u>6156.1000659</u>
508	19	Sekizkardes, H., Cochran, E., Malandrino, N., Garg, A. & Brown, R. J. Efficacy of
509		Metreleptin Treatment in Familial Partial Lipodystrophy Due to PPARG vs LMNA
510		Pathogenic Variants. J Clin Endocrinol Metab 104, 3068-3076 (2019).
511		https://doi.org:10.1210/jc.2018-02787
512	20	Simha, V. et al. Comparison of efficacy and safety of leptin replacement therapy in
513		moderately and severely hypoleptinemic patients with familial partial lipodystrophy
514		of the Dunnigan variety. J Clin Endocrinol Metab 97 , 785-792 (2012).
515		https://doi.org:10.1210/jc.2011-2229
516	21	Takeyari, S. <i>et al.</i> Metreleptin treatment for congenital generalized lipodystrophy
517		type 4 (CGL4): a case report. Clinical pediatric endocrinology : case reports and
518		clinical investigations : official journal of the Japanese Society for Pediatric
519		Endocrinology 28, 1-7 (2019). https://doi.org:10.1297/cpe.28.1
520	22	Oral, E. A. <i>et al.</i> Leptin-replacement therapy for lipodystrophy. <i>N Engl J Med</i> 346 ,
521		570-578 (2002). <u>https://doi.org:10.1056/NEJMoa012437</u>
522	23	Park, J. Y., Javor, E. D., Cochran, E. K., DePaoli, A. M. & Gorden, P. Long-term efficacy
523		of leptin replacement in patients with Dunnigan-type familial partial lipodystrophy.
524		Metabolism 56, 508-516 (2007). https://doi.org:10.1016/j.metabol.2006.11.010
525	24	Chaves, C., Chaves, M., Anselmo, J. & César, R. Successful long-term use of
526		pioglitazone in Berardinelli-Seip lipodystrophy-associated diabetes. Endocrinol
527		Diabetes Metab Case Rep 2021 (2021). https://doi.org:10.1530/edm-20-0183
528	25	Collet-Gaudillat, C., Billon-Bancel, A. & Beressi, J. P. Long-term improvement of
529		metabolic control with pioglitazone in a woman with diabetes mellitus related to
530		Dunnigan syndrome: a case report. <i>Diabetes Metab</i> 35 , 151-154 (2009).
531		https://doi.org:10.1016/j.diabet.2009.01.001
532	26	Gambineri, A. et al. Monogenic polycystic ovary syndrome due to a mutation in the
533		lamin A/C gene is sensitive to thiazolidinediones but not to metformin. Eur J
534		Endocrinol 159, 347-353 (2008). https://doi.org:10.1530/eje-08-0272
535	27	Moreau, F. et al. Efficacy of pioglitazone in familial partial lipodystrophy of the
536		Dunnigan type: a case report. <i>Diabetes Metab</i> 33 , 385-389 (2007).
537		https://doi.org:10.1016/j.diabet.2007.04.005
538	28	Owen, K. R., Donohoe, M., Ellard, S. & Hattersley, A. T. Response to treatment with
539		rosiglitazone in familial partial lipodystrophy due to a mutation in the LMNA gene.
540		Diabet Med 20 , 823-827 (2003). https://doi.org:10.1046/j.1464-5491.2003.01034.x
541	29	Simha, V., Rao, S. & Garg, A. Prolonged thiazolidinedione therapy does not reverse
542		fat loss in patients with familial partial lipodystrophy, Dunnigan variety. <i>Diabetes</i>
543		Obes Metab 10, 1275-1276 (2008). https://doi.org:10.1111/j.1463-
544		1326.2008.00978.x

545	30	Luedtke, A. et al. Thiazolidinedione response in familial lipodystrophy patients with
546		LMNA mutations: a case series. Horm Metab Res 44, 306-311 (2012).
547		https://doi.org:10.1055/s-0031-1301284
548	31	Agostini, M. et al. A Pharmacogenetic Approach to the Treatment of Patients With
549		PPARG Mutations. <i>Diabetes</i> 67, 1086-1092 (2018). https://doi.org:10.2337/db17-
550		1236
551	32	Francis, G. A. <i>et al.</i> Peroxisomal proliferator activated receptor-gamma deficiency in
552		a Canadian kindred with familial partial lipodystrophy type 3 (FPLD3). BMC Med
553		Genet 7, 3 (2006). https://doi.org:10.1186/1471-2350-7-3
554	33	Savage, D. B. <i>et al.</i> Human metabolic syndrome resulting from dominant-negative
555		mutations in the nuclear receptor peroxisome proliferator-activated receptor-
556		gamma. <i>Diabetes</i> 52 , 910-917 (2003). <u>https://doi.org:10.2337/diabetes.52.4.910</u>
557	34	Lüdtke, A. <i>et al.</i> Long-term treatment experience in a subject with Dunnigan-type
558	0.	familial partial lipodystrophy: efficacy of rosiglitazone. <i>Diabet Med</i> 22 , 1611-1613
559		(2005). <u>https://doi.org:10.1111/j.1464-5491.2005.01757.x</u>
560	35	Hashimoto, N. <i>et al.</i> A case of type A insulin resistance associated with heterozygous
561	55	Asn462Ser mutation of the insulin receptor gene. <i>Diabetology International</i> 3 , 239-
562		243 (2012). <u>https://doi.org:10.1007/s13340-012-0079-6</u>
563	36	Jo, W. <i>et al.</i> Development of endometrial carcinoma in a patient with leprechaunism
564	50	(donohue syndrome). <i>Clinical pediatric endocrinology : case reports and clinical</i>
565		investigations : official journal of the Japanese Society for Pediatric Endocrinology 22 ,
566		33-38 (2013). <u>https://doi.org:10.1292/cpe.22.33</u>
567	37	Perge, K. <i>et al.</i> Intrauterine Growth Restriction and Hypertrophic Cardiomyopathy as
568	57	Prenatal Ultrasound Findings in a Case of Leprechaunism. <i>Mol Syndromol</i> 11 , 223-
569		227 (2020). <u>https://doi.org:10.1159/000509837</u>
570	38	Plamper, M., Gohlke, B., Schreiner, F. & Woelfle, J. Mecasermin in Insulin Receptor-
570	30	Related Severe Insulin Resistance Syndromes: Case Report and Review of the
572		Literature. International journal of molecular sciences 19 (2018).
572		
	20	https://doi.org:10.3390/ijms19051268 Carmody, D., Ladsaria, S. S., Buikema, R. K., Semple, R. K. & Greeley, S. A. Successful
574	39	
575		rhIGF1 treatment for over 5 years in a patient with severe insulin resistance due to
576		homozygous insulin receptor mutation. <i>Diabet Med</i> 33 , e8-e12 (2016).
577	40	https://doi.org:10.1111/dme.12884
578	40	de Kerdanet, M. <i>et al.</i> Ten-year improvement of insulin resistance and growth with
579		recombinant human insulin-like growth factor 1 in a patient with insulin receptor
580		mutations resulting in leprechaunism. <i>Diabetes Metab</i> 41 , 331-337 (2015).
581		https://doi.org:10.1016/j.diabet.2014.11.001
582	41	Weber, D. R., Stanescu, D. E., Semple, R., Holland, C. & Magge, S. N. Continuous
583		subcutaneous IGF-1 therapy via insulin pump in a patient with Donohue syndrome. J
584		<i>Pediatr Endocrinol Metab</i> 27 , 1237-1241 (2014). <u>https://doi.org:10.1515/jpem-2013-</u>
585		0402
586	42	Regan, F. M. <i>et al.</i> Treatment with recombinant human insulin-like growth factor
587		(rhIGF)-I/rhIGF binding protein-3 complex improves metabolic control in subjects
588		with severe insulin resistance. <i>J Clin Endocrinol Metab</i> 95 , 2113-2122 (2010).
589		https://doi.org:10.1210/jc.2009-2088
590	43	Vestergaard, H., Rossen, M., Urhammer, S. A., Müller, J. & Pedersen, O. Short- and
591		long-term metabolic effects of recombinant human IGF-I treatment in patients with

592		severe insulin resistance and diabetes mellitus. Eur J Endocrinol 136 , 475-482 (1997).
593		https://doi.org:10.1530/eje.0.1360475
594	44	Kuzuya, H. <i>et al.</i> Trial of insulinlike growth factor I therapy for patients with extreme
595		insulin resistance syndromes. <i>Diabetes</i> 42 , 696-705 (1993).
596		https://doi.org:10.2337/diab.42.5.696
597	45	Takahashi, Y. <i>et al.</i> A homozygous kinase-defective mutation in the insulin receptor
598		gene in a patient with leprechaunism. <i>Diabetologia</i> 40 , 412-420 (1997).
599		https://doi.org:10.1007/s001250050695
600	46	Nakashima, N., Umeda, F., Yanase, T. & Nawata, H. Insulin resistance associated with
601		substitution of histidine for arginine 252 in the alpha-subunit of the human insulin
602		receptor: trial of insulin-like growth factor I injection therapy to enhance insulin
603		sensitivity. J Clin Endocrinol Metab 80 , 3662-3667 (1995).
604		https://doi.org:10.1210/jcem.80.12.8530617
605	47	Metwalley, K. A. & Farghaly, H. S. Berardinelli-Seip syndrome type 1 in an Egyptian
606		child. <i>Indian J Hum Genet</i> 20 , 75-78 (2014). <u>https://doi.org:10.4103/0971-</u>
607		6866.132762
608	48	Kirel, B. <i>et al.</i> A case of Donohue syndrome "Leprechaunism" with a novel mutation
609		in the insulin receptor gene. <i>Turk Pediatri Ars</i> 52 , 226-230 (2017).
610		https://doi.org:10.5152/TurkPediatriArs.2017.3193
611	49	Saito-Hakoda, A. <i>et al.</i> A follow-up during puberty in a Japanese girl with type A
612		insulin resistance due to a novel mutation in INSR. Clinical pediatric endocrinology :
613		case reports and clinical investigations : official journal of the Japanese Society for
614		Pediatric Endocrinology 27 , 53-57 (2018). <u>https://doi.org:10.1297/cpe.27.53</u>
615	50	Kawana, Y., Imai, J., Sawada, S., Yamada, T. & Katagiri, H. Sodium-Glucose
616		Cotransporter 2 Inhibitor Improves Complications of Lipodystrophy: A Case Report.
617		Ann Intern Med 166 , 450-451 (2017). <u>https://doi.org:10.7326/l16-0372</u>
618	51	Hamaguchi, T. et al. Treatment of a case of severe insulin resistance as a result of a
619		PIK3R1 mutation with a sodium-glucose cotransporter 2 inhibitor. Journal of diabetes
620		investigation 9 , 1224-1227 (2018). <u>https://doi.org:10.1111/jdi.12825</u>
621	52	Ciudin, A. et al. Successful treatment for the Dunnigan-type familial partial
622		lipodystrophy with Roux-en-Y gastric bypass. Clin Endocrinol (Oxf) 75, 403-404
623		(2011). <u>https://doi.org:10.1111/j.1365-2265.2011.04057.x</u>
624	53	Grundfest-Broniatowski, S., Yan, J., Kroh, M., Kilim, H. & Stephenson, A. Successful
625		Treatment of an Unusual Case of FPLD2: The Role of Roux-en-Y Gastric Bypass-Case
626		Report and Literature Review. J Gastrointest Surg 21 , 739-743 (2017).
627		<u>https://doi.org:10.1007/s11605-016-3300-2</u>
628	54	Kozusko, K. et al. Clinical and molecular characterization of a novel PLIN1 frameshift
629		mutation identified in patients with familial partial lipodystrophy. Diabetes 64, 299-
630		310 (2015). <u>https://doi.org:10.2337/db14-0104</u>
631	55	Kadowaki, T. <i>et al.</i> Two mutant alleles of the insulin receptor gene in a patient with
632		extreme insulin resistance. <i>Science</i> 240 , 787-790 (1988).
633		https://doi.org:10.1126/science.2834824
634	56	Yoshimasa, Y. et al. Insulin-resistant diabetes due to a point mutation that prevents
635		insulin proreceptor processing. Science 240, 784-787 (1988).
636		https://doi.org:10.1126/science.3283938
637	57	Shackleton, S. <i>et al.</i> LMNA, encoding lamin A/C, is mutated in partial lipodystrophy.
638		Nat Genet 24 , 153-156 (2000). <u>https://doi.org:10.1038/72807</u>

639	58	Lightbourne, M. & Brown, R. J. Genetics of Lipodystrophy. Endocrinol Metab Clin
640		North Am 46, 539-554 (2017). https://doi.org:10.1016/j.ecl.2017.01.012
641	59	Barroso, I. et al. Dominant negative mutations in human PPARgamma associated
642		with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880-
643		883 (1999). https://doi.org:10.1038/47254
644	60	Hegele, R. A., Cao, H., Frankowski, C., Mathews, S. T. & Leff, T. PPARG F388L, a
645		transactivation-deficient mutant, in familial partial lipodystrophy. <i>Diabetes</i> 51 , 3586-
646		3590 (2002). <u>https://doi.org:10.2337/diabetes.51.12.3586</u>
647	61	Majithia, A. R. et al. Prospective functional classification of all possible missense
648		variants in PPARG. Nat Genet 48, 1570-1575 (2016). https://doi.org:10.1038/ng.3700
649	62	Mikita, J. S. <i>et al.</i> Determining the Suitability of Registries for Embedding Clinical
650		Trials in the United States: A Project of the Clinical Trials Transformation Initiative.
651		Ther Innov Regul Sci 55, 6-18 (2021). https://doi.org:10.1007/s43441-020-00185-5
652	63	Kidwell, K. M. et al. Application of Bayesian methods to accelerate rare disease drug
653		development: scopes and hurdles. Orphanet J Rare Dis 17, 186 (2022).
654		https://doi.org:10.1186/s13023-022-02342-5
655	64	Partington, G., Cro, S., Mason, A., Phillips, R. & Cornelius, V. Design and analysis
656		features used in small population and rare disease trials: A targeted review. J Clin
657		Epidemiol 144 , 93-101 (2022). <u>https://doi.org:10.1016/j.jclinepi.2021.12.009</u>
658	65	Adams, H. R. et al. A novel, hybrid, single- and multi-site clinical trial design for CLN3
659		disease, an ultra-rare lysosomal storage disorder. Clin Trials 16, 555-560 (2019).
660		https://doi.org:10.1177/1740774519855715
661	66	< <u>https://www.eclip-web.org/information/registry/</u> >(
662	67	Doherty, D. A. et al. Registry randomised trials: a methodological perspective. BMJ
663		open 13 , e068057 (2023). <u>https://doi.org:10.1136/bmjopen-2022-068057</u>
664	68	James, S., Rao, S. V. & Granger, C. B. Registry-based randomized clinical trialsa new
665		clinical trial paradigm. Nat Rev Cardiol 12, 312-316 (2015).
666		https://doi.org:10.1038/nrcardio.2015.33
667		

Tables

668	
669	

670 671		
672	Study types	Number of studies
673	Case reports	23
674	Non-randomised	10
675	experimental	
676	study	
	Case series	8
677	Study Quality*	Number of studies
678	Good	0
679	Fair	15
680	Poor	30
681	Phenotypes	Number of participants
682	Partial	90
683	lipodystrophy	(72 LMNA, 15 PPARG, 2 PLIN1, 1 PIK3R1)
684	Generalised	56
685	lipodystrophy	(21 AGPAT2, 21 BSCL2, 1 PTRF, 2 LMNA)
686	Insulin receptor	19 (7 Monoallelic, 12 Biallelic)
687	Intervention	Number of participants
688	Metreleptin	111 (71/40/0)
689	rhIGF-1 or	17 (0/0/17)
690	rhIGF-1/IGFBP3	
691	composite	
692	Thiazolidinedione	13 (12/1/0)
693	Metformin	5 (2/1/2)
694	Bariatric surgery	4 (4/0/0)
695	SGLT2i	2 (1/1/0)
696	566121	2 (1, 1, 0)
697	Table 1: Summa	ary characteristics of included studies.
698	*Based on NHLBI quality	assessment tool; #Numbers in brackets are for
699	partial lipodystrophy	/generalised lipodystrophy/ insulin receptor
700		Abbreviations: rhIGF-1, recombinant human

insulin-like growth factor 1; IGFBP3, insulin-like growth factor binding

protein 3; SGLT2i, sodium-glucose co-transporter-2 inhibitor

705	Figure Titles and Legends
706	
707	Figure 1 Title: PRISMA diagram
708	Figure 1 Legend: PRISMA flow diagram of publications evaluated based on the search
709	strategy.
710	
711	Figure 2 Title: Effects of metreleptin in monogenic forms of lipodystrophy
712	Figure 2 Legend: Least square mean change in (a) Hemoglobin A1c (A1c), (b) Log_{10}
713	serum triglyceride concentration and (c) Body Mass Index (BMI) in patients with partial
714	lipodystrophy, generalized lipodystrophy, all forms of lipodystrophy, and subgroups with
715	PPARG, LMNA, BSCL2, and AGPAT2 mutations. Error bars represent 95% confidence
716	intervals. N=64, 38, 102, 12, 52, 17, and 20 for change in A1c in partial lipodystrophy,
717	generalized lipodystrophy, all lipodystrophy, PPARG, LMNA, BSCL2, and AGPAT2-
718	associated lipodystrophy, respectively. N=66, 40, 106, 12, 54, 19, and 20 for change in
719	\log_{10} triglycerides in partial lipodystrophy, generalized lipodystrophy, all lipodystrophy,
720	PPARG, LMNA, BSCL2, and AGPAT2-associated lipodystrophy, respectively. N=47, 14, 61,
721	10, 35, 8, and 7 for change in BMI in partial lipodystrophy, generalized lipodystrophy, all
722	lipodystrophy, PPARG, LMNA, BSCL2, and AGPAT2-associated lipodystrophy,
723	respectively.
724	
725	Figure 3 Title: Title: Effects of thiazolidinediones in monogenic forms of lipodystrophy
726	Figure 3 Legend: Least square mean change in (a) Hemoglobin A1c (A1c), (b) Log_{10}
727	serum triglyceride concentration and (c) Body Mass Index (BMI) in patients with partial
728	lipodystrophy, generalized lipodystrophy, all forms of lipodystrophy, and subgroups with

729	PPARG, and LMNA mutations. Error bars represent 95% confidence intervals. N=5, 5,
730	and 10 for change in A1c and change in log ₁₀ triglycerides in <i>PPARG, LMNA,</i> and all
731	lipodystrophy, respectively. N=1, 5, and 6 for change in BMI in PPARG, LMNA, and all
732	lipodystrophy, respectively.
733	
734	Figure 4 Title: Effects of recombinant human Insulin-like Growth Factor-1 (rhIGF) alone
735	or in combination with Insulin-like Growth Factor Binding Protein-3 (IGFBP3) in
736	patients with INSR mutations
737	Figure 4 Legend: Least square mean change in hemoglobin A1c (A1c), in all patients with
738	INSR mutations, and in subgroups with biallelic and monoallelic mutations. Error bars
739	represent 95% confidence intervals. N=7, 6, and 13 for biallelic, monoallelic, and all
740	INSR mutations.

741

743 **PMDI** Author List

744

Deirdre K. Tobias^{200,201}, Jordi Merino²⁰²⁻²⁰⁴, Abrar Ahmad²⁰⁵, Catherine Aiken^{206,207}, Jamie L. 745 Benham²⁰⁸, Dhanasekaran Bodhini²⁰⁹, Amy L. Clark²¹⁰, Kevin Colclough²¹¹, Rosa Corcoy²¹²⁻ 746 ²¹⁴, Sara J. Cromer^{203,215,216}, Daisy Duan²¹⁷, Jamie L. Felton²¹⁸⁻²²⁰, Ellen C. Francis²²¹, Pieter 747 Gillard²²², Véronique Gingras^{223,224}, Romy Gaillard²²⁵, Eram Haider²²⁶, Alice Hughes²¹¹, 748 Jennifer M. Ikle^{227,228}, Laura M. Jacobsen²²⁹, Anna R. Kahkoska²³⁰, Jarno L.T. Kettunen²³¹⁻ 749 ²³³, Raymond J. Kreienkamp^{203,204,215,234}, Lee-Ling Lim²³⁵⁻²³⁷, Jonna M.E. Männistö^{238,239}, 750 Robert Massey²²⁶, Niamh-Maire Mclennan²⁴⁰, Rachel G. Miller²⁴¹, Mario Luca Morieri^{242,243}, 751 Jasper Most²⁴⁴, Rochelle N. Naylor²⁴⁵, Bige Ozkan^{246,247}, Kashyap Amratlal Patel²¹¹, Scott J. 752 Pilla^{248,249}, Katsiaryna Prystupa^{250,251}, Sridharan Raghavan^{252,253}, Mary R. Rooney^{246,254}, 753 Martin Schön^{250,251,255}, Zhila Semnani-Azad²⁰¹, Magdalena Sevilla-Gonzalez^{215,216,256}, 754 Pernille Svalastoga^{257,258}, Wubet Worku Takele²⁵⁹, Claudia Ha-ting Tam^{237,260,261}, Anne 755 Cathrine B. Thuesen²⁰², Mustafa Tosur²⁶²⁻²⁶⁴, Amelia S. Wallace^{246,254}, Caroline C. Wang²⁵⁴, 756 Jessie J. Wong²⁶⁵, Jennifer M. Yamamoto²⁶⁶, Katherine Young²¹¹, Chloé Amouyal^{267,268}, 757 Mette K. Andersen²⁰², Maxine P. Bonham²⁶⁹, Mingling Chen²⁷⁰, Feifei Cheng²⁷¹, Tinashe 758 Chikowore^{216,272-274}, Sian C Chivers²⁷⁵, Christoffer Clemmensen²⁰², Dana Dabelea²⁷⁶, Adem 759 Y. Dawed²²⁶, Aaron J. Deutsch^{204,215,216}, Laura T. Dickens²⁷⁷, Linda A. DiMeglio^{218-220,278}, 760 761 Monika Dudenhöffer-Pfeifer²⁰⁵, Carmella Evans-Molina^{218-220,279}, María Mercè Fernández-Balsells^{280,281}, Hugo Fitipaldi²⁰⁵, Stephanie L. Fitzpatrick²⁸², Stephen E. Gitelman²⁸³, Mark O. 762 Goodarzi^{284,285}, Jessica A. Grieger^{286,287}, Marta Guasch-Ferré^{201,288}, Nahal Habibi^{286,287}, 763 Torben Hansen²⁰², Chuiguo Huang^{237,260}, Arianna Harris-Kawano²¹⁸⁻²²⁰, Heba M. Ismail²¹⁸⁻ 764 ²²⁰, Benjamin Hoag^{289,290}, Randi K. Johnson^{291,292}, Angus G. Jones^{211,293}, Robert W. 765 Koivula²⁹⁴, Aaron Leong^{203,216,295}, Gloria K.W. Leung²⁶⁹, Ingrid M. Libman²⁹⁶, Kai Liu²⁸⁶, S. 766 Alice Long²⁹⁷, William L. Lowe, Jr.²⁹⁸, Robert W. Morton²⁹⁹⁻³⁰¹, Ayesha A. Motala³⁰², Suna 767 Onengut-Gumuscu³⁰³, James S. Pankow³⁰⁴, Maleesa Pathirana^{286,287}, Sofia Pazmino³⁰⁵, Dianna Perez²¹⁸⁻²²⁰, John R. Petrie³⁰⁶, Camille E. Powe^{203,215,216,307}, Alejandra Quinteros²⁸⁶, 768 769 Rashmi Jain^{308,309}, Debashree Ray^{254,310}, Mathias Ried-Larsen^{311,312}, Zeb Saeed³¹³, Vanessa 770 Santhakumar²⁰⁰, Sarah Kanbour^{248,314}, Sudipa Sarkar²⁴⁸, Gabriela S.F. Monaco²¹⁸⁻²²⁰, Denise 771 772 M. Scholtens³¹⁵, Elizabeth Selvin^{246,254}, Wayne Huey-Herng Sheu³¹⁶⁻³¹⁸, Cate Speake³¹⁹, Maggie A. Stanislawski²⁹¹, Nele Steenackers³⁰⁵, Andrea K. Steck³²⁰, Norbert Stefan^{251,321,322}, 773 774 Julie Støy³²³, Rachael Taylor³²⁴, Sok Cin Tye^{325,326}, Gebresilasea Gendisha Ukke²⁵⁹, Marzhan 775 Urazbayeva^{263,327}, Bart Van der Schueren^{305,328}, Camille Vatier^{329,330}, John M. Wentworth³³¹⁻ ³³³, Wesley Hannah^{334,335}, Sara L. White^{275,336}, Gechang Yu^{237,260}, Yingchai Zhang^{237,260}, 776 Shao J. Zhou^{287,337}, Jacques Beltrand^{338,339}, Michel Polak^{338,339}, Ingvild Aukrust^{257,340}, Elisa 777 de Franco²¹¹, Sarah E. Flanagan²¹¹, Kristin A. Maloney³⁴¹, Andrew McGovern²¹¹, Janne 778 Molnes^{257,340}, Mariam Nakabuye²⁰², Pål Rasmus Njølstad^{257,258}, Hugo Pomares-Millan^{205,342}, 779 Michele Provenzano³⁴³, Cécile Saint-Martin³⁴⁴, Cuilin Zhang^{345,346}, Yeyi Zhu^{347,348}, 780 Sungyoung Auh³⁴⁹, Russell de Souza^{300,350}, Andrea J Fawcett^{351,352}, Chandra Gruber³⁵³, 781 Eskedar Getie Mekonnen^{354,355}, Emily Mixter³⁵⁶, Diana Sherifali^{300,357}, Robert H. Eckel³⁵⁸, 782 John J. Nolan^{359,360}, Louis H. Philipson³⁵⁶, Rebecca J. Brown³⁴⁹, Liana K. Billings^{361,362}, 783 Kristen Boyle²⁷⁶, Tina Costacou²⁴¹, John M. Dennis²¹¹, Jose C. Florez^{203,204,215,216}, Anna L. 784 Gloyn^{227,228,363}, Maria F. Gomez^{205,364}, Peter A. Gottlieb³²⁰, Siri Atma W. Greeley³⁶⁵, Kurt 785 Griffin^{309,366}, Andrew T. Hattersley^{211,293}, Irl B. Hirsch³⁶⁷, Marie-France Hivert^{203,368,369}, 786 Korey K. Hood²⁶⁵, Jami L. Josefson³⁵¹, Soo Heon Kwak³⁷⁰, Lori M. Laffel³⁷¹, Siew S. Lim²⁵⁹, 787 Ruth J.F. Loos^{202,372}, Ronald C.W. Ma^{237,260,261}, Chantal Mathieu²²², Nestoras 788 Mathioudakis²⁴⁸, James B. Meigs^{216,295,373}, Shivani Misra^{374,375}, Viswanathan Mohan³⁷⁶, Rinki 789 Murphy³⁷⁷⁻³⁷⁹, Richard Oram^{211,293}, Katharine R. Owen^{294,380}, Susan E. Ozanne³⁸¹, Ewan R. 790 Pearson²²⁶, Wei Perng²⁷⁶, Toni I. Pollin^{341,382}, Rodica Pop-Busui³⁸³, Richard E. Pratley³⁸⁴, 791

Teanne M. Redman³⁸⁵, Maria J. Redondo^{262,263}, Rebecca M. Reynolds²⁴⁰, Robert K.

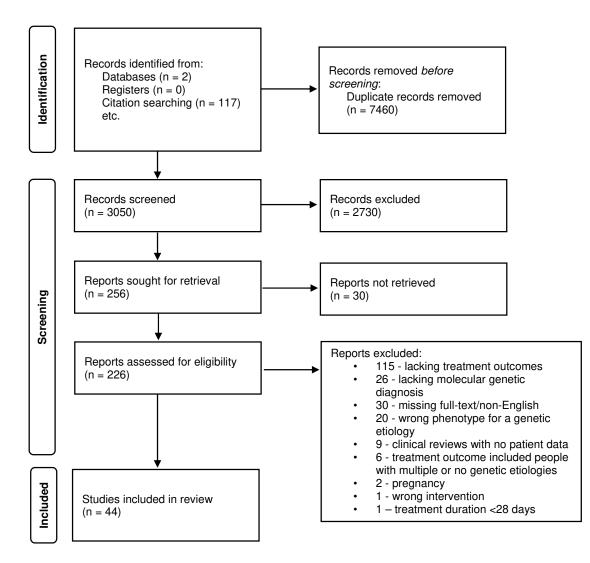
- Semple^{240,386}, Jennifer L. Sherr³⁸⁷, Emily K. Sims²¹⁸⁻²²⁰, Arianne Sweeting^{388,389}, Tiinamaija 793
- Tuomi²³¹⁻²³³, Miriam S. Udler^{203,204,215,216}, Kimberly K. Vesco³⁹⁰, Tina Vilsbøll^{391,392}, Robert 794
- Wagner^{250,251,393}, Stephen S. Rich³⁰³, Paul W. Franks^{201,205,294,301}[⊠] (orcid.org/0000-0002-795
- 796 0520-7604).
- 797

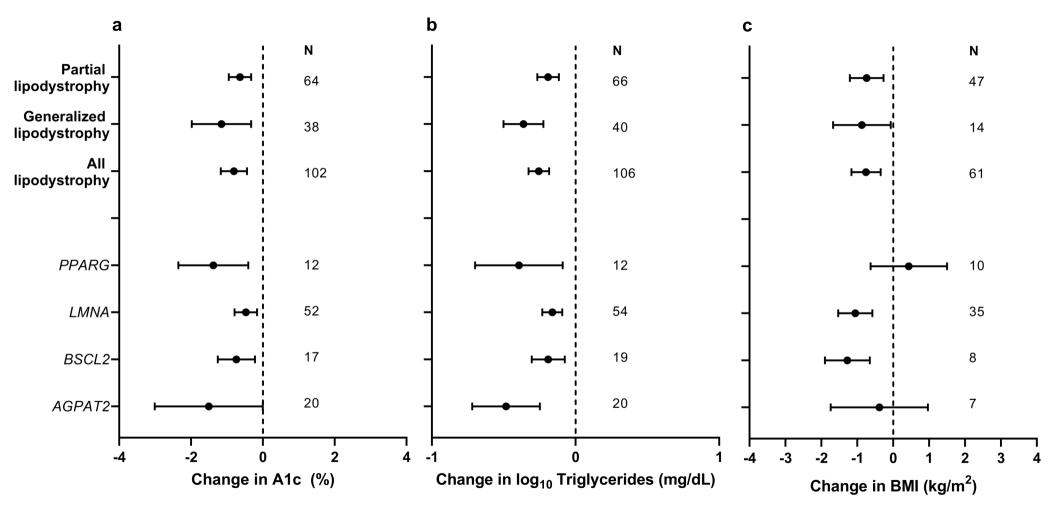
798 [™]Corresponding author

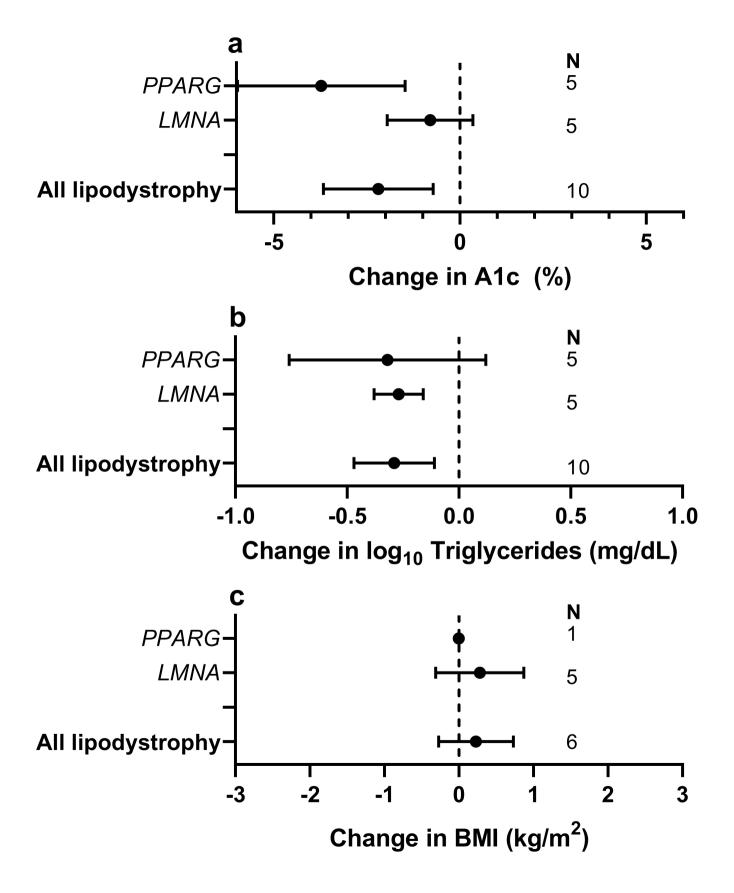
- 799 800 Affiliations
- 801
- 802 ²⁰⁰Division of Preventative Medicine, Department of Medicine, Brigham and Women's 803 Hospital and Harvard Medical School, Boston, MA, USA.
- 804 ²⁰¹Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- 805 ²⁰²Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and 806 Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- 807 ²⁰³Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA, USA.
- 808 ²⁰⁴Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- 809 ²⁰⁵Department of Clinical Sciences, Lund University Diabetes Centre, Lund University,
- 810 Malmö. Sweden.
- 811 ²⁰⁶Department of Obstetrics and Gynaecology, the Rosie Hospital, Cambridge, UK.
- 812 ²⁰⁷NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK.
- 813 ²⁰⁸Departments of Medicine and Community Health Sciences, Cumming School of Medicine,
- 814 University of Calgary, Calgary, AB, Canada.
- ²⁰⁹Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, 815 816 India.
- 817 ²¹⁰Division of Pediatric Endocrinology, Department of Pediatrics, Saint Louis University
- 818 School of Medicine, SSM Health Cardinal Glennon Children's Hospital, St. Louis, MO, USA.
- 819 ²¹¹Department of Clinical and Biomedical Sciences, University of Exeter Medical School,
- 820 Exeter, Devon, UK.
- 821 ²¹²CIBER-BBN, ISCIII, Madrid, Spain.
- ²¹³Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain. 822
- 823 ²¹⁴Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- 824 ²¹⁵Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA. 825
- 826 ²¹⁶Department of Medicine, Harvard Medical School, Boston, MA, USA.
- 827 ²¹⁷Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of
- 828 Medicine, Baltimore, MD, USA.
- 829 ²¹⁸Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- 830 ²¹⁹Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, IN, 831 USA.
- ²²⁰Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, IN, 832 833 USA.
- 834 ²²¹Department of Biostatistics and Epidemiology, Rutgers School of Public Health,
- 835 Piscataway, NJ, USA.
- ²²²University Hospital Leuven, Leuven, Belgium. 836
- ²²³Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada. 837
- 838 ²²⁴Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada.
- 839 ²²⁵Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands.

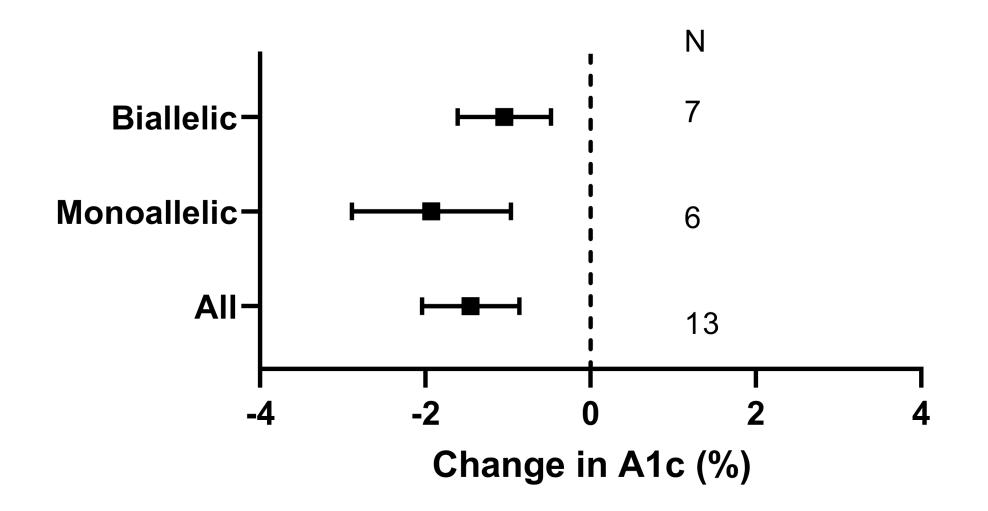
- 840 ²²⁶Division of Population Health & Genomics, School of Medicine, University of Dundee,
- 841 Dundee, UK.
- 842 ²²⁷Department of Pediatrics, Stanford School of Medicine, Stanford University, CA, USA.
- 843 ²²⁸Stanford Diabetes Research Center, Stanford School of Medicine, Stanford University, CA,
- 844 USA.
- 845 ²²⁹University of Florida, Gainesville, FL, USA.
- ²³⁰Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- 847 ²³¹Helsinki University Hospital, Abdominal Centre/Endocrinology, Helsinki, Finland.
- 848 ²³²Folkhalsan Research Center, Helsinki, Finland.
- ²³³Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland.
- ²³⁴Department of Pediatrics, Division of Endocrinology, Boston Children's Hospital, Boston,
 MA, USA.
- ²³⁵Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur,
 Malaysia.
- ²³⁶Asia Diabetes Foundation, Hong Kong SAR, China.
- ²³⁷Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong
 SAR, China.
- 857 ²³⁸Departments of Pediatrics and Clinical Genetics, Kuopio University Hospital, Kuopio,
- 858 Finland.
- ²³⁹Department of Medicine, University of Eastern Finland, Kuopio, Finland.
- 860 ²⁴⁰Centre for Cardiovascular Science, Queen's Medical Research Institute, University of 861 Edipburgh Edipburgh LIK
- 861 Edinburgh, Edinburgh, UK.
- ²⁴¹Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA.
- 863 ²⁴²Metabolic Disease Unit, University Hospital of Padova, Padova, Italy.
- 864 ²⁴³Department of Medicine, University of Padova, Padova, Italy.
- ²⁴⁴Department of Orthopedics, Zuyderland Medical Center, Sittard-Geleen, The Netherlands.
- 866 ²⁴⁵Departments of Pediatrics and Medicine, University of Chicago, Chicago, Illinois, USA.
- 867 ²⁴⁶Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins
- 868 Bloomberg School of Public Health, Baltimore, Maryland, USA.
- 869 ²⁴⁷Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of
- 870 Medicine, Baltimore, MD, USA.
- 871 ²⁴⁸Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- 872 ²⁴⁹Department of Health Policy and Management, Johns Hopkins University Bloomberg
- 873 School of Public Health, Baltimore, Maryland, USA.
- 874 ²⁵⁰Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes
- 875 Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf,
 876 Germany.
- 877 ²⁵¹German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764,
- 878 Neuherberg, Germany.
- 879 ²⁵²Section of Academic Primary Care, US Department of Veterans Affairs Eastern Colorado
 880 Health Care System, Aurora, CO, USA.
- ²⁵³Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
- 882 ²⁵⁴Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health,
- 883 Baltimore, Maryland, USA.
- 884 ²⁵⁵Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of
- 885 Sciences, Bratislava, Slovakia.

- 886 ²⁵⁶Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston MA,
- 887 USA.
- ²⁵⁷Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University
 of Bergen, Bergen, Norway.
- ²⁵⁸Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway.
- 891 ²⁵⁹Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia.
- 892 ²⁶⁰Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health
- 893 Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- ²⁶¹Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong
 Kong, China.
- 896 ²⁶²Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- ²⁶³Division of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Houston, TX,
- 898 USA.
- 899 ²⁶⁴Children's Nutrition Research Center, USDA/ARS, Houston, TX, USA.
- 900 ²⁶⁵Stanford University School of Medicine, Stanford, CA, USA.
- 901 ²⁶⁶Internal Medicine, University of Manitoba, Winnipeg, MB, Canada.
- 902 ²⁶⁷Department of Diabetology, APHP, Paris, France.
- 903 ²⁶⁸Sorbonne Université, INSERM, NutriOmic team, Paris, France.
- ²⁶⁹Department of Nutrition, Dietetics and Food, Monash University, Melbourne, Victoria,
 Australia.
- ²⁷⁰Monash Centre for Health Research and Implementation, Monash University, Clayton,
 VIC, Australia.
- 908 ²⁷¹Health Management Center, The Second Affiliated Hospital of Chongqing Medical
- 909 University, Chongqing Medical University, Chongqing, China.
- 910 ²⁷²MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics,
- 911 Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- ²⁷³Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA,
 USA.
- ²⁷⁴Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University
 of the Witwatersrand, Johannesburg, South Africa.
- 916 ²⁷⁵Department of Women and Children's health, King's College London, London, UK.
- 917 ²⁷⁶Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado
- 918 Anschutz Medical Campus, CO, USA.
- ²⁷⁷Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Kovler Diabetes
 Center, University of Chicago, Chicago, USA.
- 921 ²⁷⁸Department of Pediatrics, Riley Hospital for Children, Indiana University School of
- 922 Medicine, Indianapolis, IN, USA.
- 923 ²⁷⁹Richard L. Roudebush VAMC, Indianapolis, IN, USA.
- 924 ²⁸⁰Biomedical Research Institute Girona, IdlBGi, Girona, Spain.
- 925 ²⁸¹Diabetes, Endocrinology and Nutrition Unit Girona, University Hospital Dr Josep Trueta,
- 926 Girona, Spain.
- 927 ²⁸²Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell
- 928 Health, Manhasset, NY, USA.
- ²⁸³University of California at San Francisco, Department of Pediatrics, Diabetes Center; San
 Francisco, CA, USA.
- 931 ²⁸⁴Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los
- 932 Angeles, CA, USA.


- 933 ²⁸⁵Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- 934 ²⁸⁶Adelaide Medical School, Faculty of Health and Medical Sciences, The University of
- 935 Adelaide, Adelaide, Australia.
- 936 ²⁸⁷Robinson Research Institute, The University of Adelaide, Adelaide, Australia.
- 937 ²⁸⁸Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic
- 938 Research, Faculty of Health and Medical Sciences, University of Copenhagen, 1014
- 939 Copenhagen, Denmark.
- ²⁸⁹Division of Endocrinology and Diabetes, Department of Pediatrics, Sanford Children's
 Hospital, Sioux Falls, SD, USA.
- 942 ²⁹⁰University of South Dakota School of Medicine, E Clark St, Vermillion, SD, USA.
- ²⁹¹Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus,
 Aurora, CO, USA.
- ²⁹²Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA.
- 946 ²⁹³Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK.
- ²⁹⁴Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford,
 948 UK.
- ²⁹⁵Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA.
 ²⁹⁶UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- 951 ²⁹⁷Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA.
- ²⁹⁸Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago,
 IL USA.
- ²⁹⁹Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
 ³⁰⁰Population Health Research Institute, Hamilton, Canada.
- 956 ³⁰¹Department of Translational Medicine, Medical Science, Novo Nordisk Foundation,
- 957 Tuborg Havnevej 19, 2900 Hellerup, Denmark.
- 958 ³⁰²Department of Diabetes and Endocrinology, Nelson R Mandela School of Medicine,
- 959 University of KwaZulu-Natal, Durban, South Africa.
- ³⁰³Center for Public Health Genomics, Department of Public Health Sciences, University of
 Virginia, Charlottesville, VA, USA.
- ³⁰⁴Division of Epidemiology and Community Health, School of Public Health, University of
 Minnesota, MN, USA.
- 964 ³⁰⁵Department of Chronic Diseases and Metabolism, Clinical and Experimental
- 965 Endocrinology, KU Leuven, Leuven, Belgium.
- 966 ³⁰⁶School of Health and Wellbeing, College of Medical, Veterinary and Life Sciences,
- 967 University of Glasgow, UK.
- 968 ³⁰⁷Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General
- 969 Hospital and Harvard Medical School, Boston, MA, USA.
- 970 ³⁰⁸Sanford Children's Specialty Clinic, Sioux Falls, SD, USA.
- ³⁰⁹Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux
 Falls, SD, USA.
- ³¹⁰Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore,
 Maryland, USA.
- 974 Maryland, USA.
 975 ³¹¹Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark.
- ³¹²Institute for Sports and Clinical Biomechanics, University of Southern Denmark, Denmark.
- ³¹³Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Indiana
- 978 University School of Medicine, Indianapolis, IN, USA.
- 979 ³¹⁴AMAN Hospital, Doha, Qatar.


- 980 ³¹⁵Department of Preventive Medicine, Division of Biostatistics, Northwestern University 981 Feinberg School of Medicine, Chicago, IL, USA. 982 ³¹⁶Institute of Molecular and Genomic Medicine, National Health Research Institutes, 983 Taiwan. ³¹⁷Divsion of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung, 984 985 Taiwan. 986 ³¹⁸Division of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taipei, 987 Taiwan. ³¹⁹Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA, USA. 988 989 ³²⁰Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, CO, 990 USA. ³²¹University Hospital of Tübingen, Tübingen, Germany. 991 992 ³²²Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, 993 Neuherberg, Germany. ³²³Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark. 994 995 ³²⁴University of Newcastle, Newcastle upon Tyne, UK. 996 ³²⁵Sections on Genetics and Epidemiology, Joslin Diabetes Center, Harvard Medical School, 997 Boston, MA, USA. 998 ³²⁶Department of Clinical Pharmacy and Pharmacology, University Medical Center 999 Groningen, Groningen, The Netherlands. 1000 ³²⁷Gastroenterology, Baylor College of Medicine, Houston, TX, USA. 1001 ³²⁸Department of Endocrinology, University Hospitals Leuven, Belgium. 1002 ³²⁹Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of 1003 Cardiometabolism and Nutrition, Paris 75012, France. 1004 ³³⁰Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance 1005 Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for 1006 Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France. 1007 ³³¹Royal Melbourne Hospital Department of Diabetes and Endocrinology, Parkville, Vic, 1008 Australia. ³³²Walter and Eliza Hall Institute, Parkville, Vic, Australia. 1009 1010 ³³³University of Melbourne Department of Medicine, Parkville, Vic, Australia. 1011 ³³⁴Deakin University, Melbourne, Australia. ³³⁵Department of Epidemiology, Madras Diabetes Research Foundation, Chennai, India. 1012 ³³⁶Department of Diabetes and Endocrinology, Guy's and St Thomas' Hospitals NHS 1013 1014 Foundation Trust, London, UK. ³³⁷School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia. 1015 1016 ³³⁸Institut Cochin, Inserm U 10116, Paris, France. 1017 ³³⁹Pediatric endocrinology and diabetes, Hopital Necker Enfants Malades, APHP Centre, 1018 université de Paris, Paris, France. ³⁴⁰Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway. 1019 1020 ³⁴¹Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 1021 USA. 1022 ³⁴²Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA. 1023 ³⁴³Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-1024 Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy.
- 1025 ³⁴⁴Department of Medical Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University,
- 1026 Paris, France.


- 1027 ³⁴⁵Global Center for Asian Women's Health, Yong Loo Lin School of Medicine, National 1028 University of Singapore, Singapore. ³⁴⁶Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National 1029 1030 University of Singapore, Singapore. ³⁴⁷Kaiser Permanente Northern California Division of Research, Oakland, California, USA. 1031 ³⁴⁸Department of Epidemiology and Biostatistics, University of California San Francisco, 1032 1033 California, USA. ³⁴⁹National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of 1034 Health, Bethesda, MD, USA. 1035 1036 ³⁵⁰Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada. 1037 1038 ³⁵¹Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, 1039 Northwestern University Feinberg School of Medicine, Chicago, IL, USA. 1040 ³⁵²Department of Clinical and Organizational Development, Chicago, IL, USA. 1041 ³⁵³American Diabetes Association, Arlington, Virginia, USA. 1042 ³⁵⁴College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia. 1043 ³⁵⁵Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, 1044 2160 Antwerp, Belgium. 1045 ³⁵⁶Department of Medicine and Kovler Diabetes Center, University of Chicago, Chicago, IL, 1046 USA. ³⁵⁷School of Nursing, Faculty of Health Sciences, McMaster University, Hamilton, Canada. 1047 1048 ³⁵⁸Division of Endocrinology, Metabolism, Diabetes, University of Colorado, CO, USA. 1049 ³⁵⁹Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, 1050 Ireland. ³⁶⁰Department of Endocrinology, Wexford General Hospital, Wexford, Ireland. 1051 1052 ³⁶¹Division of Endocrinology, NorthShore University HealthSystem, Skokie, IL, USA. ³⁶²Department of Medicine, Prtizker School of Medicine, University of Chicago, Chicago, IL, 1053 1054 USA. ³⁶³Department of Genetics, Stanford School of Medicine, Stanford University, CA, USA. 1055 1056 ³⁶⁴Faculty of Health, Aarhus University, Denmark. 1057 ³⁶⁵Departments of Pediatrics and Medicine and Kovler Diabetes Center, University of 1058 Chicago, Chicago, USA. ³⁶⁶Sanford Research, Sioux Falls, SD, USA. 1059 ³⁶⁷University of Washington School of Medicine, Seattle, WA, USA. 1060 1061 ³⁶⁸Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care 1062 Institute, Boston, MA, USA. 1063 ³⁶⁹Department of Medicine, Universite de Sherbrooke, Sherbrooke, QC, Canada. 1064 ³⁷⁰Department of Internal Medicine, Seoul National University College of Medicine, Seoul 1065 National University Hospital, Seoul, Republic of Korea. 1066 ³⁷¹Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA. ³⁷²Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount 1067 1068 Sinai, New York, NY, USA. 1069 ³⁷³Broad Institute, Cambridge, MA, USA. 1070 ³⁷⁴Division of Metabolism, Digestion and Reproduction, Imperial College London, London,
- 1071 UK.
- ³⁷⁵Department of Diabetes & Endocrinology, Imperial College Healthcare NHS Trust, London,


1073 UK.

- 1074 ³⁷⁶Department of Diabetology, Madras Diabetes Research Foundation & Dr. Mohan's
- 1075 Diabetes Specialities Centre, Chennai, India.
- 1076 ³⁷⁷Department of Medicine, Faculty of Medicine and Health Sciences, University of
- 1077 Auckland, Auckland, New Zealand.
- ³⁷⁸Auckland Diabetes Centre, Te Whatu Ora Health New Zealand, Auckland, New Zealand.
- ³⁷⁹Medical Bariatric Service, Te Whatu Ora Counties, Health New Zealand, Auckland, New
 Zealand.
- 1081 ³⁸⁰Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
- 1082 ³⁸¹University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases
- 1083 Unit, Wellcome-MRC Institute of Metabolic Science, Cambridge, UK.
- ³⁸²Department of Epidemiology & Public Health, University of Maryland School of Medicine,
 Baltimore, MD.
- ³⁸³Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes,
 University of Michigan, MI, USA.
- 1088 ³⁸⁴AdventHealth Translational Research Institute, Orlando, FL, USA.
- 1089 ³⁸⁵Pennington Biomedical Research Center, Baton Rouge, LA, USA.
- 1090 ³⁸⁶MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh,
- 1091 Edinburgh, UK.
- 1092 ³⁸⁷Yale School of Medicine, New Haven, CT, USA.
- ³⁸⁸Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- 1094 ³⁸⁹Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- ³⁹⁰Kaiser Permanente Northwest, Kaiser Permanente Center for Health Research, Portland,
 OR, USA.
- ³⁹¹Clinial Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
- 1098 ³⁹²Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of
- 1099 Copenhagen, Copenhagen, Denmark.
- ³⁹³Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich
- 1101 Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
- 1102

