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Abstract

Background: Monogenic insulin resistance (IR) includes lipodystrophy and disorders of insulin
signalling. We sought to assess effects of interventions in monogenic IR, stratified by genetic
aetiology.

Methods: Systematic review using PubMed, MEDLINE and Embase (1 January 1987 to 23 June 2021).
Studies reporting individual-level effects of pharmacologic and/or surgical interventions in monogenic
IR were eligible. Individual data were extracted and duplicates removed. Outcomes were analysed for
each gene and intervention, and in aggregate for partial, generalised and all lipodystrophy.

Results: 10 non-randomised experimental studies, 8 case series, and 23 case reports meet inclusion
criteria, all rated as having moderate or serious risk of bias. Metreleptin use is associated with lowering
of triglycerides and hemoglobin Alc (HbAlc) in all lipodystrophy (n=111), partial (n=71) and
generalised lipodystrophy (n=41)), and in LMNA, PPARG, AGPAT2 or BSCL2 subgroups (n=72,13,21 and
21 respectively). Body Mass Index (BMI) is lowered in partial and generalised lipodystrophy, and in
LMNA or BSCL2, but not PPARG or AGPAT2 subgroups. Thiazolidinediones are associated with
improved HbA1c and triglycerides in all lipodystrophy (n=13), improved HbAlc in PPARG (n=5), and
improved triglycerides in LMNA (n=7). In INSR-related IR, rhIGF-1, alone or with IGFBP3, are associated
with improved HbAlc (n=17). The small size or absence of other genotype-treatment combinations
preclude firm conclusions.

Conclusions: The evidence guiding genotype-specific treatment of monogenic IR is of low to very low
quality. Metreleptin and Thiazolidinediones appear to improve metabolic markers in lipodystrophy,
and rhlGF-1 appears to lower HbAlc in INSR-related IR. For other interventions there is insufficient

evidence to assess efficacy and risks in aggregated lipodystrophy or genetic subgroups.

Plain Language Summary

The hormone insulin stimulates nutrient uptake from the bloodstream into tissues. In insulin

resistance (IR), this action is blunted. Some rare gene alterations cause severe IR, diabetes that is
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difficult to control, and early complications. Many treatments have been suggested, but reliable
evidence of their risks and benefits is sparse. We analysed all available reports describing treatment
outcomes in severe IR. We found that the evidence is of low to very low quality overall. Injections of
leptin, a hormone from fat tissue, or thiazolidinedione tablets that increase fat tissue both appear to
improve diabetes control in people with reduced ability to make fat tissue. Injections of another
treatment, insulin-like growth factor, appear to improve diabetes control in people with direct
blockage of insulin action. There is a pressing need to improve evidence for treatment in these rare

and severe conditions.
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Introduction

Diabetes caused by single gene changes is highly heterogeneous in molecular
aetiopathogenesis. It may be grouped into disorders featuring primary failure of insulin
secretion, and disorders in which insulin resistance (IR), often severe, predates secondary
failure of insulin secretion and diabetes. Monogenic IR is itself heterogeneous, encompassing
primary lipodystrophy syndromes, primary disorders of insulin signalling, and a group of

conditions in which severe IR is part of a more complex developmental syndrome 1.

Monogenic IR is rare but underdiagnosed. The commonest subgroup is formed by
genetic lipodystrophy syndromes #3. Recent analysis of a large clinical care cohort unselected
for metabolic disease suggested a clinical prevalence of lipodystrophy of around 1 in 20,000,
with a prevalence of plausible lipodystrophy-causing genetic variants of around 1 in 7,000 4.
Monogenic IR is important to recognise, because affected patients are at risk not only of
micro- and macrovascular complications of diabetes, but also of complications such as
dyslipidemia, pancreatitis, and steatohepatitis, especially in lipodystrophy syndromes >. Non-
metabolic complications specific to individual gene defects may also occur, including
hypertrophic cardiomyopathy and other manifestations of soft tissue overgrowth 3. Diabetes
is also commonly the sentinel presentation of a multisystem disorder, and recognition of

complex syndromes in a diabetes clinic may trigger definitive diagnostic testing.

The only therapy licensed specifically for monogenic IR is recombinant human
methionyl leptin (metreleptin), with licensed indications encompassing a subset of patients
with lipodystrophy and inadequate metabolic control. The current license in the USA is
restricted to generalised lipodystrophy, but in Europe it extends to some patients with partial

lipodystrophy. A substantial proportion of the body of evidence considered in licensing
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addressed patients ascertained by presence of clinical lipodystrophy, and the role of genetic
stratification in precision treatment of lipodystrophy has not been systematically addressed.
Many other medications and other treatment options are also widely used in monogenic IR,
although not licensed for that specific subgroup. Such use draws on the evidence base and
treatment algorithms developed for type 2 diabetes. Several forms of monogenic IR have

molecular and/or clinical attributes that suggest potential precision approaches to treatment.

We sought now to undertake a systematic review of the current evidence guiding
treatment of monogenic IR stratified by genetic aetiology, to assess evidence for differential
responses to currently used therapies, to establish gaps in evidence, and to inform future
studies. This systematic review is written on behalf of the American Diabetes Association
(ADA)/European Association for the Study of Diabetes (EASD) Precision Medicine in Diabetes
Initiative (PMDI) as part of a comprehensive evidence evaluation in support of the
2"d International Consensus Report on Precision Diabetes Medicine . The PMDI was
established in 2018 by the ADA in partnership with the EASD to address the burgeoning need

for better diabetes prevention and care through precision medicine ’.

Our analyses show that metreleptin and thiazolidinediones appear to lower HbAlc,
triglycerides, and body weight in patients with lipodystrophy of all genotypes, and rhiGF-1 appears
to lower HbA1c in patients with INSR-related IR. For other interventions there is insufficient

evidence to assess efficacy and risks.

Methods
Inclusion Criteria and Search Methodology

To assess treatment of severe IR of known monogenic aetiology, with or without
diabetes mellitus, including generalised and partial lipodystrophy and genetic disorders of the

5
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insulin receptor, we developed, registered and followed a protocol for a systematic review
(PROSPERO ID CRD42021265365; registered July 21, 2021)%. The study was reported in
accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines. Filtering and selection of studies for data extraction were recorded using

the Covidence platform (https://www.covidence.org, Melbourne, Australia).

We searched PubMed, MEDLINE and Embase from 1987 (the year before
identification of the first monogenic aetiology of IR) to June 23, 2021 for potentially relevant
human studies in English. We used broad search terms designed to capture the heterogeneity
of monogenic IR and its treatments. We searched for studies addressing 1. Severe IR due to
variant(s) in a single gene OR 2. Congenital generalised or familial partial lipodystrophy due
to variant(s) in a single gene. We selected only studies that reported a treatment term,
including but not limited to mention of 1. Thiazolidinediones (TZD), 2. Metreleptin, 3. SGLT2
inhibitors, 4. GLP-1 analogues, 5. Bariatric surgery (all types), 6. Recombinant human IGF-1 or
IGF-1/IGFBP3 composite, 7. U-500 insulin. No interventions were excluded in the primary
search. In addition to the automated search, we hand searched reference lists of relevant
review articles. Given the rarity of monogenic IR, no study types were excluded in the initial
search. We ultimately considered experimental studies, case reports, and case series. The full
search strategy is described in Supplementary Table 1.

Study selection for data extraction was performed in two phases, namely primary
screening of title and abstract, then full text review of potentially eligible articles. Two authors
independently evaluated eligibility, with discrepancies resolved by a third investigator. We
excluded publications without original data, such as reviews, editorials, and comments, and
those solely addressing severe IR or lipodystrophy of unknown or known non-monogenic

aetiology, including HIV-related or other acquired lipodystrophies, or autoimmune insulin
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receptoropathy (Type B insulin resistance). Studies in which no clear categorical or numerical
outcome of an intervention was reported, or in which interventions were administered for

less than 28 days were also excluded.

Data extraction and outcome assessments

One author extracted data from each eligible study using data extraction sheets.
Data from each study was verified by all 3 authors to reach consensus. Data were extracted
from text, tables, or figures. Study investigators were contacted for pertinent unreported
data or additional details where possible, most commonly genetic aetiology of insulin
resistance in reported patients, and outcome data.

Data extracted for each study included first author, publication year, country, details
of intervention, duration of follow-up, study design, and number of participants. Subject-
level data were extracted for outcomes of interest, including sex, genetic cause of severe
insulin resistance (gene name, mono- vs biallelic INSR pathogenic variant), phenotypic details
of severe IR/lipodystrophic subtype (generalised vs partial lipodystrophy; associated
syndromic features). Subject level outcome data for were extracted prior to and after the
longest-reported exposure to the intervention of interest for hemoglobin Alc (Alc), body
mass index, serum triglyceride, ALT, or AST concentration, any index of liver size or lipid
content, and total daily insulin dose. Potential adverse effects of interventions were recorded,
including urinary tract infection, genital candidiasis, hypoglycemia, excessive weight loss,

pancreatitis, soft tissue overgrowth, and tumor formation.

Risk of bias and certainty of evidence assessment



164 Quality of extracted case reports and case series was assessed using NIH Study

165 Quality Assessment Tools® by a single reviewer and verified by 2 additional reviewers.

166  Grading of overall evidence for specific research questions was undertaken as detailed in 1°,
167

168  Statistics and Reproducibility

169 Extracted data were managed using Covidence and analysed with SAS version 9.4.
170  Pooled analysis was undertaken for all combinations of genotype and intervention for which
171  sufficient numbers were reported, as well as for aggregated lipodystrophies, and

172  generalized and partial subgroups of lipodystrophy. Generalized Estimating Equation

173  models were used with time as a fixed factor and study as a random factor to examine

174  treatment effects. Serum triglyceride concentrations were analyzed with and without log
175 transformation. Data were summarized using estimated least-squared means with

176  corresponding 95% confidence intervals.

177

178  Results

179  Identification of eligible studies

180 Initial searching identified 2,933 studies, to which 117 were added from the

181  bibliography reviews. 256 articles remained after screening of titles and abstracts, and 44
182  after full text screening (Figure 1).

183

184  Included studies addressed limited interventions and most had a high risk of bias

185 The 44 studies analysed, and assessment of their quality are summarised in Table 1
186 and detailed in Supplementary Data 1. Study quality was assessed as being fair in 15 cases

187  and poor in 29 cases, including all case reports. This was primarily due to high risk of bias,
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particularly related to lack of control group for all studies. Three of the 44 studies included in
further analysis included only individuals already described in other reports and were
discarded, leaving 41 studies for final analysis. These comprised 10 non-controlled
experimental studies, 8 case series and 23 individual case reports (Table 1). No controlled
trials were found. Individuals reported in the studies included 90 with partial lipodystrophy
(72 due to LMNA mutation and 15 due to PPARG mutation), 42 with generalized lipodystrophy
(21 AGPAT2, 21 BSCL2, 2 LMNA), and 19 with IR due to INSR mutation(s). Among the
interventions described, only the responses to metreleptin (111 recipients),
thiazolidinediones (13 recipients) and rhlGF-1 (alone or as a composite with IGFBP3) (17
recipients) were described in more than 5 cases (Table 1). This meant that for the large
preponderance of possible genotype-treatment combinations no specific data were
recovered (Supplementary Table 2). Full outcome data extracted are summarised in
Supplementary Data 2, and subject-level data are shown in Supplementary Figures 1 through

8 with raw data provided in Supplementary Data 2.

Metreleptin treatment was associated with improved metabolic control in lipodystrophy

In our registered systematic review plan we posed several subquestions about
treatment of monogenic IR subtypes that we felt were tractable. The first related to the risks
and benefits (assessed by side effects, Alc, serum triglyceride concentration, body mass index
(BMI), and indices of fatty liver) of metreleptin in patients with different monogenic subtypes
of lipodystrophy. The response to metreleptin was described in 111 people (71 with partial
lipodystrophy, 40 with generalized lipodystrophy) 123, Metreleptin was administered for
19420 months (median 12, range 1-108) and was associated with lowering of Alc in

aggregated lipodystrophy, in generalized and partial subgroups, and in all genetic subgroups
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for whom sufficient patients were reported, namely those with LMNA, PPARG, AGPAT2 and
BSCL2 mutations (0.5 to 1.5% least square mean reduction) (Level 3 evidence, Supplementary
Data 3, Figure 2). Metreleptin treatment was also associated with lowering of serum
triglyceride concentration in aggregated lipodystrophy, in generalized and partial subgroups,
and in those with LMNA, PPARG, AGPAT2 and BSCL2 mutations (92 to 1760 mg/dL least
square mean reduction for analyses of untransformed data) (Level 3 evidence,
Supplementary Data 3, Figure 2). BMI was lower after treatment in aggregated lipodystrophy,
in generalized and partial subgroups, and in those with LMNA or BSCL2 mutations, but not
PPARG or AGPAT2 mutations (Level 3 evidence, Supplementary Data 3, Figure 2). Liver
outcomes reported were too heterogeneous to analyse in aggregate. Only a single adverse

event, namely hypoglycemia, was reported.

Thiazolidinedione treatment showed variable efficacy in limited studies

We next addressed the evidence of risks and benefits of thiazolidinediones (TZDs) in
patients with lipodystrophy. We were specifically interested in any evidence of a greater or
lesser response in partial lipodystrophy caused by PPARG variants than in other lipodystrophy
subtypes, as TZDs are potent ligands for the product of the PPARG gene, the master regulator
of adipocyte differentiation. The response to TZDs was described in only 13 people, however
(12 FPLD, 1 CGL) 2434, TZDs were administered for 29+28 months (median 24, range 2-96).
TZD use was associated with improved Alc in aggregated lipodystrophy (least square mean
reduction 2.2%) and in PPARG-related but not LMNA-related partial lipodystrophy (Level 4
evidence, Supplementary Data 3, Figure 3). Serum triglyceride concentration decreased in

aggregated lipodystrophy and in those with LMNA-related but not PPARG-related partial

10
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lipodystrophy (Level 4 evidence, Supplementary Data 3, Figure 3). No adverse events were

reported.

rhiGF-1 treatment in INSR-related IR was associated with improvement in Alc

Our last specific question related to the risks (e.g. tumors, hypoglycemia, cardiac
hypertrophy, other soft tissue overgrowth) and benefits (assessed by Alc) of recombinant
human IGF-1 (rhIGF-1) or IGF-1/IGFBP3 composite in patients with pathogenic INSR variants.
The response to rhIGF-1 was described in 17 people with pathogenic INSR variants for a mean
of 45+81 months (median 9, range 1-288) 3°-%6, In INSR-related IR, we found that use of rhIGF-
1, alone or as a composite with IGFBP3, was associated with improvement in Alc, and this
was true also in subgroups with monoallelic and biallelic variants (1.5 to 2% least square mean
reduction, Level 4 evidence, Supplementary Data 3, Figure 4). One instance of increased soft

tissue overgrowth and two episodes of hypoglycemia was reported.

Many questions about genotype-stratified treatment were not addressed

While many other interesting and clinically relevant questions arise about other
potential genotype-specific responses to therapy in monogenic IR, the small size or absence
of other genotype by treatment groups precluded the drawing of conclusions about risks and
benefits, including for very widely used medications such as metformin 2647-4° newer agents
commonly used in type 2 diabetes including SGLT2 inhibitors >>! and GLP1 agonists, and non

pharmacologic interventions such as bariatric surgery >2->4,

Discussion

11
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Thirty-five years since INSR mutations were identified in extreme IR >>°6, and 23 years
since the first monogenic cause of lipodystrophy was reported >/, many different forms of
monogenic IR are known 3°8 These are associated with substantial early morbidity and
mortality, ranging from death in infancy to accelerated complications of diabetes and fatty
liver disease in adulthood, depending on the genetic subtype. Several opportunities for
genotype-guided, targeted treatment are suggested by the causal genes, and so we set out
to review the current evidence guiding treatment of monogenic IR stratified by genetic
aetiology. We found a paucity of high-quality evidence (all level 3 to 4). No controlled trials of
any intervention were identified, and there was substantial heterogeneity of study
populations and intervention regimens, even for the same interventional agent.

The evidence which we did find, from a small number of uncontrolled experimental
studies, augmented by case series and numerous case reports, suggest that metreleptin
offers metabolic benefits across different lipodystrophy subtypes, in keeping with its licensing
for use in some patients with lipodystrophy in both Europe and the USA. Notably, the
evidence base considered by licensing authorities was larger than the one we present,
including many studies of phenotypically ascertained lipodystrophy that included acquired or
idiopathic disease. In contrast we have addressed solely individuals with lipodystrophy caused
by variation in a single gene. The limited data we identified do not clearly support differential
effects among different monogenic lipodystrophy subgroups, but for many subtypes numbers
reported are very small. Moreover, although responses appear comparable for partial and
generalised lipodystrophy, this is highly likely to reflect selection bias in studies of partial
lipodystrophy towards those with more severe metabolic complications and lower baseline

serum leptin concentrations.
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A clear opportunity for precision diabetes therapy in monogenic IR is offered by the IR
and lipodystrophy caused by mutations in PPARG, which encodes the target for
thiazolidinediones (TZDs) such as pioglitazone %%, PPARG is a nuclear receptor that serves as
the master transcriptional driver of adipocyte differentiation, and so as soon as PPARG
mutations were identified to cause severe IR, there was interest in the potential of TZDs as
specific treatments. Although we found small scale evidence supporting greater Alc
reduction with TZDs in PPARG vs LMNA-related lipodystrophy, only 5 patients with PPARG-
related lipodystrophy in whom TZD effects were clearly described were reported, and
responses were inconsistent. Thus, it remains unclear whether people with IR due to PPARG
variants are more or indeed less sensitive to TZDs than people with other forms of
lipodystrophy. Loss-of-function PPARG mutations are the second commonest cause of familial
partial lipodystrophy 2, and the function of coding missense variants in PPARG has been
assayed systematically to accelerate genetic diagnosis %, so the opportunity to test genotype-
related therapy in PPARG-related IR seems particularly tractable in future.

Other obvious questions about targeted treatment of monogenic, lipodystrophic IR
are not addressed by current evidence. Important examples relate to the risks and benefits
of treatments used in type 2 diabetes such as GLP-1 agonists and SGLT2 inhibitors. It is
rational to suppose that these medications, which decrease weight as well as improving
glycaemia in those with raised BMI and diabetes, may also be efficacious in lipodystrophy
even where BMI is normal or only slightly raised. This is because in both situations adipose
storage capacity is exceeded, leading to fat failure. It is the offloading of overloaded adipose
tissue, rather than the baseline BMI/adipose mass, which underlies the efficacy of therapy.
However, GLP-1 agonists are contraindicated in those with prior pancreatitis, while SGLT2

inhibitor use can be complicated by diabetic ketoacidosis. In untreated lipodystrophy
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pancreatitis is common, yet this is due to hypertriglyceridaemia, which is likely to be improved
by GLP-1 agonist use, while excessive supply of free fatty acids to the liver may promote
ketogenesis. Thus, assessment of both classes of drug in lipodystrophy and its genetic
subgroups will be important to quantify risks and benefits, which may be distinct to those in
obesity-related diabetes.

A further question we prespecified related to the use of rhIGF1 in people with severe
IR due to INSR mutations. This use of rhIGF-1 was first described in recessive INSR defects in
the early 1990s 4, and several studies of rhIGF-1 therapy of duration less than 28 days in
people with INSR mutations have provided proof of concept for acute metabolic benefits
(summarized in 38). This use of rhIGF-1 is based on the rationale that IGF-1 activates a receptor
and signalling pathway very closely similar to those activated by insulin. Based on case
reports, case series and narrative reviews, rhlGF-1 is now commonly used in neonates with
extreme IR due to biallelic INSR mutations, although, unlike metreleptin in lipodystrophy, this
use is still unlicensed. Our review of published data, which was limited to durations of
intervention greater than 28 days, is consistent with glycaemic benefits of rhIGF-1, alone or
in composite form with its binding protein IGFBP3, in people with INSR mutations.
Nevertheless, such studies are challenging to interpret and are potentially fraught with bias
of different types, particularly publication bias favouring positive outcomes. Responses to
rhiGF1 are also challenging to determine in uncontrolled studies as small differences in
residual function of mutated receptors can have substantial effects on the severity and
natural history of the resulting IR, yet relatively few INSR mutations have been studied
functionally. This underlines the narrow nature of, and substantial residual uncertainty in, the

evidence base for use of rhIGF-1 in monogenic IR.
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There are several reasons why important questions about precision treatment of
monogenic IR have not been settled. Although severe autosomal recessive IR is usually
detected in infancy, commoner dominant forms of monogenic IR are often diagnosed
relatively late, often only after years of management based on presumptive diagnoses of type
2 or sometimes type 1 diabetes. Initial management as type 2 diabetes means that by the
time a clinical and then genetic diagnosis is made, most patents have been treated with
agents such as metformin, and increasingly SGLT2 inhibitors or GLP-1 agonists, outside trial
settings. It is not clear that harm is caused by such use of drugs with well-established safety
profiles and efficacy in type 2 diabetes, but the lack of systematic data gathering precludes
identification of specific drug-genotype interactions. Moreover, because attempts to gather
evidence for monogenic IR treatment has tended to focus on high-cost adjunctive therapies
such as metreleptin, the evidence base for their use is better developed, although controlled
trials are lacking. Licensing of high-cost treatments such as metreleptin in lipodystrophy,
while effects of many more commonly used, cheaper drugs with well-established safety
profiles lack formal testing in monogenic IR is potentially problematic, skewing incentives and
guidelines towards expensive therapy before optimal treatment algorithms have been
established.

Other challenges in conducting trials in monogenic IR arise from the exquisite
sensitivity of IR to exacerbating factors such as puberty, diet, and energy balance. This creates
a signal to noise problem particularly problematic in uncontrolled studies, in which non-
pharmacological components of interventions such as increased support for behavioural
change may confound attribution of beneficial outcomes to pharmacological agents tested.

The key question now is how the evidence base for managing monogenic severe IR
can be improved in the face of constraints in studying rare, clinically heterogeneous, and
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geographically dispersed patients who are often diagnosed late with a condition that is
exquisitely environmentally sensitive. Growing interest in and development of methodologies
for clinical trials in rare disease 2, including Bayesian methodologies 354, and hybrid single-
and multi-site designs 9 offer hope for future filling of evidence gaps. One important and
pragmatic opportunity arises from the development of large regional, national and
international networks and registries for lipodystrophy (e.g. the Europe-based ECLip registry
66), allied to emergence of randomised registry-based trial (RRT) methodology ¢7-%8. RRTs have
attracted increasing interest in several disease areas and are particularly suitable for
evaluation of agents with well-established safety profiles. When a simple randomisation tool
is deployed in the context of a registry, RRTs can offer rapid, cost-effective recruitment and
high external validity (i.e. relevance to real world practice). In monogenic IR this would permit
guestions to be addressed about optimal usage of different common medications in different
genetic subgroups, including the order of introduction of therapies, and their optimal
combinations. The quality of such studies will critically rely on good registry design and quality
and completeness of data capture 6768,

In summary, severe monogenic IR syndromes are clinically and genetically
heterogeneous, with high early morbidity and mortality. However, despite opportunities for
targeted therapy of some monogenic subgroups based on the nature of the causal gene
alteration, the evidence for genotype-stratified therapy is weak. This is in part because of the
rarity and frequent late diagnosis of monogenic IR, but also because therapeutic research to
date has focused largely on phenotypically ascertained cross cutting diagnoses such as
lipodystrophy. We suggest that approaches such as RRTs hold the best hope to answer some

of the persisting major questions about precision treatment in monogenic IR.
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Tables

Study types Number of studies
Case reports 23
Non-randomised 10
experimental
study
Case series 8
Study Quality* Number of studies
Good 0
Fair 15
Poor 30
Phenotypes Number of participants
Partial 90
lipodystrophy (72 LMNA, 15 PPARG, 2 PLIN1, 1 PIK3R1)
Generalised 56
lipodystrophy (21 AGPAT2, 21 BSCL2, 1 PTRF, 2 LMNA)

Insulin receptor

19 (7 Monoallelic, 12 Biallelic)

Intervention

Number of participants

Metreleptin 111 (71/40/0)
rhIGF-1 or 17 (0/0/17)
rhiGF-1/IGFBP3

composite

Thiazolidinedione 13 (12/1/0)
Metformin 5(2/1/2)
Bariatric surgery 4 (4/0/0)
SGLT2i 2 (1/1/0)

Table 1: Summary characteristics of included studies.

*Based on NHLBI quality assessment tool; “Numbers in brackets are for
partial lipodystrophy/generalised lipodystrophy/ insulin receptor
individuals respectively. Abbreviations: rhIGF-1, recombinant human
insulin-like growth factor 1; IGFBP3, insulin-like growth factor binding
protein 3; SGLT2i, sodium-glucose co-transporter-2 inhibitor
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Figure Titles and Legends

Figure 1 Title: PRISMA diagram
Figure 1 Legend: PRISMA flow diagram of publications evaluated based on the search

strategy.

Figure 2 Title: Effects of metreleptin in monogenic forms of lipodystrophy

Figure 2 Legend: Least square mean change in (a) Hemoglobin Alc (Alc), (b) Logio
serum triglyceride concentration and (c) Body Mass Index (BMI) in patients with partial
lipodystrophy, generalized lipodystrophy, all forms of lipodystrophy, and subgroups with
PPARG, LMNA, BSCL2, and AGPAT2 mutations. Error bars represent 95% confidence
intervals. N=64, 38, 102, 12, 52, 17, and 20 for change in Alc in partial lipodystrophy,
generalized lipodystrophy, all lipodystrophy, PPARG, LMNA, BSCL2, and AGPAT2-
associated lipodystrophy, respectively. N=66, 40, 106, 12, 54, 19, and 20 for change in
logio triglycerides in partial lipodystrophy, generalized lipodystrophy, all lipodystrophy,
PPARG, LMNA, BSCL2, and AGPAT2-associated lipodystrophy, respectively. N=47, 14, 61,
10, 35, 8, and 7 for change in BMI in partial lipodystrophy, generalized lipodystrophy, all
lipodystrophy, PPARG, LMNA, BSCL2, and AGPAT2-associated lipodystrophy,

respectively.

Figure 3 Title: Title: Effects of thiazolidinediones in monogenic forms of lipodystrophy
Figure 3 Legend: Least square mean change in (a) Hemoglobin Alc (Alc), (b) Logio
serum triglyceride concentration and (c) Body Mass Index (BMI) in patients with partial

lipodystrophy, generalized lipodystrophy, all forms of lipodystrophy, and subgroups with
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PPARG, and LMNA mutations. Error bars represent 95% confidence intervals. N=5, 5,
and 10 for change in Alc and change in logio triglycerides in PPARG, LMNA, and all
lipodystrophy, respectively. N=1, 5, and 6 for change in BMI in PPARG, LMNA, and all

lipodystrophy, respectively.

Figure 4 Title: Effects of recombinant human Insulin-like Growth Factor-1 (rhiGF) alone
or in combination with Insulin-like Growth Factor Binding Protein-3 (IGFBP3) in
patients with INSR mutations

Figure 4 Legend: Least square mean change in hemoglobin Alc (Alc), in all patients with
INSR mutations, and in subgroups with biallelic and monoallelic mutations. Error bars
represent 95% confidence intervals. N=7, 6, and 13 for biallelic, monoallelic, and all

INSR mutations.
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Reports sought for retrieval
(n = 256)
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Reports assessed for eligibility
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(n =44)

v
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Reports not retrieved
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Reports excluded:

115 - lacking treatment outcomes

26 - lacking molecular genetic
diagnosis

30 - missing full-text/non-English

20 - wrong phenotype for a genetic
etiology

9 - clinical reviews with no patient data
6 - treatment outcome included people
with multiple or no genetic etiologies
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1 - wrong intervention

1 — treatment duration <28 days




a b c
: N , N ; N
Partial ! ' 1
- o - - -
lipodystrophy E 64 : 66 —e— E 47
] ] '
Generalized ! ' !
- ———i i —e—i 4
lipodystrophy E 38 E 40 '_’_'E 14
Al | : i o ! | !
livodvyst h o : 102 : 106 ' 61
ipodystrophy ! . e :
] ] '
] ] )
- ' - | = !
] ] '
] ] '
] ] )
PPARG- —— 12 - ——— | 12 - ———— 10
: i '
] ] '
LMNA- o, 52 - o+ 54 - —e— | 35
: : '
] ] )
BSCL 24 —e— | 17 - —o— | 19 . ——i | 8
: : '
] ] )
AGPAT2- ® : 20 - ——| : 20 _ ; ° : 7
: ; '
1 1 1 | | 1 1 1 1 1
-4 -2 0 -1 0 1 4 -3 -2 -1 0 1 2

Change in A1c (%)

Change in log, Triglycerides (mg/dL)

Change in BMI (kg/mz)



d

' N

PPARG ® | ! S

LMNA- —e—r 5
i :
]

All lipodystrophy— ® : 10
| | | | | | I | | | | | I | |
0 5

Change in A1c (%)

b
' N
PPARG- o : 5
LMNA- e 5
4 :
|
All lipodystrophy- —e— | 10
| | | |
-1.0 -0.5 0.0 0.5 1.0
Change in log4, Triglycerides (mg/dL)
C . N
PPARGH ¢ 1
LMNA- reo— 5
i :
|
All lipodystrophy- —-— 6
| | | | | |
-3 -2 -1 0 1 2 3

Change in BMI (kglmz)



|
Biallelic— —a— 7
:
Monoallelic{ ~ +—&— 1 ¢
[
[
All- —a— E .
| | |
4 2 0 2

Change in A1c (%)



