825 research outputs found

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for top-philic heavy resonances in pp collisions at s=13 TeV with the ATLAS detector

    Get PDF
    A search for the associated production of a heavy resonance with a top-quark or a top-antitop-quark pair, and decaying into a tt¯ pair is presented. The search uses the data recorded by the ATLAS detector in pp collisions at s=13 TeV at the Large Hadron Collider during the years 2015–2018, corresponding to an integrated luminosity of 139 fb-1. Events containing exactly one electron or muon are selected. The two hadronically decaying top quarks from the resonance decay are reconstructed using jets clustered with a large radius parameter of R=1. The invariant mass spectrum of the two top quark candidates is used to search for a resonance signal in the range of 1.0 TeV to 3.2 TeV. The presence of a signal is examined using an approach with minimal model dependence followed by a model-dependent interpretation. No significant excess is observed over the background expectation. Upper limits on the production cross section times branching ratio at 95% confidence level are provided for a heavy Z′ boson based on a simplified model, for Z′ mass between 1.0 TeV and 3.0 TeV. The observed (expected) limits range from 21 (14) fb to 119 (86) fb depending on the choice of model parameters

    Search for resonant production of dark quarks in the dijet final state with the ATLAS detector

    Get PDF
    This paper presents a search for a new Z′ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at s = 13 TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95% confidence-level upper limits on the production cross-section times branching ratio of the Z′ to dark quarks as a function of the Z′ mass for various dark-quark scenarios

    Search for non-resonant Higgs boson pair production in the 2b+2ℓ+ETmiss final state in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    A search for non-resonant Higgs boson pair (HH) production is presented, in which one of the Higgs bosons decays to a b-quark pair (bb¯) and the other decays to WW*, ZZ*, or τ+τ−, with in each case a final state with ℓ+ℓ−+ neutrinos (ℓ = e, μ). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb−1, are used in this analysis. Events are selected to have exactly two b-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the HH events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter κλ and the quadrilinear coupling parameter κ2V are each separately constrained by this analysis to be within the ranges [−6.2, 13.3] and [−0.17, 2.4], respectively, at 95% confidence level, when all other parameters are fixed

    A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at s=8 TeV

    Get PDF
    This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton–proton collision data collected by the ATLAS experiment in 2012 at s=8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb-1. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum pT and rapidity y are measured in the pole region, defined as 80<mℓℓ<100 GeV, over the range |y|<3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the pT distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5–1.0% for |y|<2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N4LL resummation with N3LO fixed-order perturbative calculations. The differential rapidity distributions integrated over pT are even more precise, with accuracies from 0.2–0.3% for |y|<2.0 to 0.4–0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s = 13 TeV, corresponding to an integrated luminosity of 138 fb −1. Leptonic (τ → ℓνℓ ντ) and hadronic (τ → hadrons ντ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B (H → eτ) < 0.20% (0.12%) and B (H → μτ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → μτ signals. The best-fit branching ratio difference, B (H → μτ) → B (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ. [Figure not available: see fulltext.]

    Measurement of the production cross-section of J/ψ and ψ(2S) mesons in pp collisions at s=13 TeV with the ATLAS detector

    Get PDF
    Measurements of the differential production cross-sections of prompt and non-prompt J/ψ and ψ(2S) mesons with transverse momenta between 8 and 360 GeV and rapidity in the range |y|<2 are reported. Furthermore, measurements of the non-prompt fractions of J/ψ and ψ(2S), and the prompt and non-prompt ψ(2S)-to-J/ψ production ratios, are presented. The analysis is performed using 140 fb-1 of s=13 TeV pp collision data recorded by the ATLAS detector at the LHC during the years 2015–2018

    Search for a CP-odd Higgs boson decaying into a heavy CP-even Higgs boson and a Z boson in the ℓ+ℓ−tt¯ and νν¯bb¯ final states using 140 fb<sup>−1</sup> of data collected with the ATLAS detector

    Get PDF
    A search for a heavy CP-odd Higgs boson, A, decaying into a Z boson and a heavy CP-even Higgs boson, H, is presented. It uses the full LHC Run 2 dataset of pp collisions at s = 13 TeV collected with the ATLAS detector, corresponding to an integrated luminosity of 140 fb−1. The search for A → ZH is performed in the ℓ+ℓ−tt¯ and νν¯bb¯ final states and surpasses the reach of previous searches in different final states in the region with mH > 350 GeV and mA > 800 GeV. No significant deviation from the Standard Model expectation is found. Upper limits are placed on the production cross-section times the decay branching ratios. Limits with less model dependence are also presented as functions of the reconstructed m(tt¯) and m(bb¯) distributions in the ℓ+ℓ−tt¯ and νν¯bb¯ channels, respectively. In addition, the results are interpreted in the context of two-Higgs-doublet models

    Combination of searches for invisible decays of the Higgs boson using 139 fb−1 of proton-proton collision data at √s = 13 TeV collected with the ATLAS experiment

    Get PDF
    Many extensions of the Standard Model predict the production of dark matter particles at the LHC. Sufficiently light dark matter particles may be produced in decays of the Higgs boson that would appear invisible to the detector. This Letter presents a statistical combination of searches for H → invisible decays where multiple production modes of the Standard Model Higgs boson are considered. These searches are performed with the ATLAS detector using 139 fb−1 of proton–proton collisions at a centre–of–mass energy of √s = 13 TeV at the LHC. In combination with the results at √s = 7 TeV and 8 TeV, an upper limit on the H → invisible branching ratio of 0.107 (0.077) at the 95% confidence level is observed (expected). These results are also interpreted in the context of models where the 125 GeV Higgs boson acts as a portal to dark matter, and limits are set on the scattering cross-section of weakly interacting massive particles and nucleons
    corecore