60 research outputs found

    Facile Fabrication of Ultrafine Copper Nanoparticles in Organic Solvent

    Get PDF
    A facile chemical reduction method has been developed to fabricate ultrafine copper nanoparticles whose sizes can be controlled down to ca. 1 nm by using poly(N-vinylpyrrolidone) (PVP) as the stabilizer and sodium borohyrdride as the reducing agent in an alkaline ethylene glycol (EG) solvent. Transmission electron microscopy (TEM) results and UV–vis absorption spectra demonstrated that the as-prepared particles were well monodispersed, mostly composed of pure metallic Cu nanocrystals and extremely stable over extended period of simply sealed storage

    Polarimetry of binary systems: polars, magnetic CVs, XRBs

    Full text link
    Polarimetry provides key physical information on the properties of interacting binary systems, sometimes difficult to obtain by any other type of observation. Indeed, radiation processes such as scattering by free electrons in the hot plasma above accretion discs, cyclotron emission by mildly relativistic electrons in the accretion shocks on the surface of highly magnetic white dwarfs and the optically thin synchrotron emission from jets can be observed. In this review, I will illustrate how optical/near-infrared polarimetry allows one to estimate magnetic field strengths and map the accretion zones in magnetic Cataclysmic Variables as well as determine the location and nature of jets and ejection events in X-ray binaries.Comment: 26 pages, 16 figures; to be published in Astrophysics and Space Science Library 460, Astronomical Polarisation from the Infrared to Gamma Rays, Editors: Mignani, R., Shearer, A., S{\l}owikowska, A., Zane,

    A novel Laccase biosensor based on laccase immobilized graphene-cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol

    Get PDF
    © The Author(s) 2017. In the present work, we demonstrate the fabrication of laccase biosensor to detect the catechol (CC) using laccase immobilized on graphene-cellulose microfibers (GR-CMF) composite modified screen printed carbon electrode (SPCE). The direct electrochemical behavior of laccase was investigated using laccase immobilized different modified SPCEs, such as GR/SPCE, CMF/SPCE and GR-CMF/SPCE. Compared with laccase immobilized GR and CMF modified SPCEs, a well-defined redox couple of CuI/CuIIfor laccase was observed at laccase immobilized GR-CMF composite modified SPCE. Cyclic voltammetry results show that the as-prepared biosensor has 7 folds higher catalytic activity with lower oxidation potential towards CC than SPCE modified with GR-CMF composite. Under optimized conditions, amperometric i-t method was used for the quantification of CC, and the amperometric response of the biosensor was linear over the concertation of CC ranging from 0.2 to 209.7 μM. The sensitivity, response time and the detection limit of the biosensor for CC is 0.932 μMμA-1 cm-2, 2 s and 0.085 μM, respectively. The biosensor has high selectivity towards CC in the presence of potentially active biomolecules and phenolic compounds. The biosensor also accessed for the detection of CC in different water samples and shows good practicality with an appropriate repea

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Highly-dispersed copper microparticles on the active gold substrate as an amperometric sensor for glucose

    No full text
    Abstract: A bimetallic electrode composed of copper microparticles dispersed onto a gold surface (Au/Cu) has been investigated as an amperometric sensor using glucose as a model compound. Such a sensing electrode has been prepared by electrochemical deposition of Cu-0 from 50 mM CU2+ and subsequent potential cycling in an alkaline medium. The morphology of the copper deposit has been examined by scanning electron microscopy. The effects of copper loading, scan rate, hydroxide concentration, and applied potential on the electrocatalytic oxidation of glucose have been also investigated. Long-term electrode stability, background current, sensitivity, and linear range of the Au/Cu electrode have been assessed for constant-potential amperometric detection (DC) at +0.550 and +0.350 V, and in pulsed-potential amperometric detection (PAD). When used as an amperometric sensor in the DC mode at an applied potential of +0.350 V, the bimetallic electrode yields a detection limit of 0.8 pmol glucose (S/N=3) with a linear dynamic range of four orders of magnitude. Comparable results have been obtained when the bimetallic sensing electrode was used in the DC mode at +0.550 V and in the PAD mode. Good mechanical stability under forced flow hydrodynamic conditions was also found upon changing the detection mode from DC to PAD and vice versa, making the multifunctional amperometric sensor very attractive for analytical applications in flowing streams. (C) 1997 Elsevier Science B.V
    corecore