44 research outputs found

    Effects of salinity and alkalinity on growth and survival of all-male giant freshwater prawn (Macrobrachium rosenbergii De Man, 1879) juveniles

    Get PDF
    All-male giant freshwater prawns (AMGFPs) have been a popular crop cultivated in the Mekong Delta, Vietnam, due to their proven production efficiency compared to all-female or mixed-sex prawn cultures. However, the crucial water quality factors impacting AMGFP aquaculture efficiency have yet to be elaborately investigated. Two separate experiments were randomly arranged with three replicates to evaluate the effects of salinity or alkalinity on the growth and survival of AMGFP juveniles during the grow-out period. The results show that the prawn survival rate in the salinity range of 0–15‰ varied from 66.1 to 74.8% and in a salinity range of 0–5‰ was relatively low compared to the range of 10-15‰; however, the difference was not significant among salinities after 90 days of culture (p > 0.05). All the prawn growth performance parameters significantly decreased with increasing salinities of 0, 5, 10, and 15‰ after 30, 60, and 90 days of culture (p 0.05), and both were significantly higher than those at salinities of 10 and 15‰ (p < 0.05) after 90 days of culture. In addition, the survival rate reached 82.5–84.4% and did not significantly differ among alkalinities of 80, 100, 120, 140, and 160 mgCaCO3 L−1. However, the growth performance parameters and yield of AMGFPs at an alkalinity of 160 mg L−1 were significantly higher than those at lower alkalinities (80, 100, 120, and 140 mg CaCO3 L−1) after 90 days of culture. Therefore, it is recommended that a salinity range of 0–5‰ and alkalinity of 160 mgCaCO3 L−1 is optimal for the growth-out culture of AMGFP juveniles

    The association between food environment, diet quality and malnutrition in low‐ and middle‐income adult populations across the rural—Urban gradient in Vietnam

    Get PDF
    Background: Economic reforms and trade liberalisation in Vaietnm have transformed the food environment, influencing dietary patterns and malnutrition status. The present study focuses on the relationship between food environments (proximity and density of food outlets) and malnutrition (underweight, overweight, obesity) through diet quality in adult populations across urban, periurban and rural areas of Vietnam. Methods: We evaluated food environment by geospatial mapping of food outlets through a transect walk across the “food ecosystem” from rural to urban areas. Diet quality was assessed using the Diet Quality Index – Vietnamese (DQI‐V) comprising Variety, Adequacy, Moderation and Balance components. Malnutrition status was determined using body mass index. We performed a mediation analysis utilising mixed effect models to control for neighbourhood clustering effects. Confounders included age, education, income and nutrition knowledge score. Results: Analysis of data from 595 adult participants (mean ± SD age: 31.2 ± 6.4 years; 50% female) found that longer distance to the nearest food outlet was associated with higher overall DQI‐V (β = 2.0; 95% confidence interval = 0.2–3.8; p = 0.036) and the Moderation component (β = 2.6; 95% confidence interval = 1.2–4.0; p = 0.001). Outlet density shows a negative association with the odds of underweight among women (odds ratio = 0.62; 95% confidence interval = 0.37–0.96). However, we did not observe statistically significant relationships between diet quality and malnutrition. Education and nutrition knowledge scores were positively associated with diet diversity, while income was negatively associated with diet moderation. Conclusions: The findings of the present study have important implications for nutrition and dietetics practice in Vietnam and globally. It emphasises the need to consider various dimensions of sustainable diets, including economic, health and socio‐cultural/political factors. Longer distances to food outlets are associated with higher diet quality, whereas lower food outlet density increases the odds of underweight among women. This poses challenges in balancing modernisation and its adverse effects on sustainable food systems. Socio‐economic status consistently correlated with diet quality and malnutrition, necessitating further research to promote healthy diets across socio‐economic strata

    Challenges to operationalizing sustainable diets: Perspectives from Kenya and Vietnam

    Get PDF
    Despite the urgent need for comprehensive food systems strategies, the challenge lies in defining feasible, evidence-based intervention points. Too little is known about issues food systems decision-makers and other change agents are running up against, particularly in low- and middle-income countries where food systems are the most vulnerable to a growing number of intertwined crises. We look at this question through the lens of sustainable diets, a growing area of research and a concept that is the basis of over 30 sets of national guidelines that aim to simultaneously address health, economic and environmental dimensions of food systems. Based on 114 interviews carried out in Kenya and Vietnam, we examine the extent to which food systems researchers, business and project managers and policy actors are attempting to intervene in food systems in ways that mirror the concept of sustainable diets. We also consider how they are managing two key ingredients that are critical to systems-change—interdisciplinary data and cross-sector collaboration. Most stakeholders we interviewed were carrying out systems-based projects, oriented—even if not explicitly—around many of the sustainable diets domains: agriculture, livelihoods, food security/access/nutrition and/or environment. The majority faced formidable challenges with both data and collaborations, however, showing why it can be so difficult to move from normative ideals like “sustainable diets” to practical realities, regardless of the context. To support more comprehensive food systems policies and interventions, our findings suggest the need for strategies that can improve the collection and accessibility of actionable, cross-sector data, and mechanisms to overcome institutional barriers that limit collaboration

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    The Global Burden of Diseases, Injuries and Risk Factors 2017 includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. METHODS: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting

    Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODErn), to generate cause fractions and cause specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NC Ds) comprised the greatest fraction of deaths, contributing to 73.4% (95% uncertainty interval [UI] 72.5-74.1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 186% (17.9-19.6), and injuries 8.0% (7.7-8.2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22.7% (21.5-23.9), representing an additional 7.61 million (7. 20-8.01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7.9% (7.08.8). The number of deaths for CMNN causes decreased by 222% (20.0-24.0) and the death rate by 31.8% (30.1-33.3). Total deaths from injuries increased by 2.3% (0-5-4-0) between 2007 and 2017, and the death rate from injuries decreased by 13.7% (12.2-15.1) to 57.9 deaths (55.9-59.2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000-289 000) globally in 2007 to 352 000 (334 000-363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118.0% (88.8-148.6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36.4% (32.2-40.6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33.6% (31.2-36.1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respirator}, infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990 neonatal disorders, lower respiratory infections, and diarrhoeal diseases were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore