224 research outputs found

    Hotter and Weaker Mediterranean Outflow as a Response to Basin-Wide Alterations

    Get PDF
    Time series collected from 2004 to 2020 at an oceanographic station located at the westernmost sill of the Strait of Gibraltar to monitor the Mediterranean outflow into the North Atlantic have been used to give some insights on changes that have been taking place in the Mediterranean basin. Velocity data indicate that the exchange through the Strait is submaximal (that is, greater values of the exchanged flows are possible) with a mean value of −0.847 ± 0.129 Sv and a slight trend to decrease in magnitude (+0.017 ± 0.003 Sv decade−1). Submaximal exchange promotes footprints in the Mediterranean outflow with little or no-time delay with regards to changes occurring in the basin. An astonishing warming trend of 0.339 ± 0.008°C decade−1 in the deepest layer of the outflow from 2013 onwards stands out among these changes, a trend that is an order of magnitude greater than any other reported so far in the water masses of the Mediterranean Sea. Biogeochemical (pH) data display a negative trend indicating a gradual acidification of the outflow in the monitoring station. Data analysis suggests that these trends are compatible with a progressively larger participation of Levantine Intermediate Water (slightly warmer and characterized by a pH lower than that of Western Mediterranean Deep Water) in the outflow. Such interpretation is supported by climatic data analysis that indicate diminished buoyancy fluxes to the atmosphere during the seven last years of the analyzed series, which in turn would have reduced the rate of formation of Western Mediterranean Deep Water. The flow through the Strait has echoed this fact in a situation of submaximal exchange and, ultimately, reflects it in the shocking temperature trend recorded at the monitoring station.Postprin

    Psychometric characteristics of a commuting-to-school behaviour questionnaire for families

    Get PDF
    The purposes of this study were: (a) to describe the patterns of modes of commuting to school (children) and to work (parents) separated by gender and age, (b) to validate the questions on children’s mode of commuting to and from school according to their parents, and (c) to analyse the reliability of a family questionnaire focused on commuting to school behaviours. A total of 611 parents (mean age: 43.28 ± 6.25 years old) from Granada (Spain) completed “Family commuting-to-school behaviour” questionnaire in two sessions separated by 14 days, (2016 and 2018). The validation between family and children’s questions was assessed using the Kappa and Spearman correlation coefficients, and the test–retest reliability within the family questions was assessed using the Kappa and the weighted Kappa. The children’s modes of commuting to school (mean age: 11.44 ± 2.77 years old) were mainly passive (57.7% to school) while parents’ modes of commuting to work were mainly active (71.6%). The validity of the mode of commuting was significant with high Kappa and Spearman coefficients. The test–retest reliability presented a good agreement for the mode of commuting to school in children, distance and time to school, and the mode of commuting to work in parents, while the questions on acceptable distance to walk or cycle to school showed a moderate to good agreement. The “Family commuting-to-school behaviour” questionnaire could be a useful tool to assess the mode of commuting of children, distance and time to school for researchers and practitioners

    InAs/AlGaAs quantum dot intermediate band solar cells with enlarged sub-bandgaps

    Full text link
    In the last decade several prototypes of intermediate band solar cells (IBSCs) have been manufactured. So far, most of these prototypes have been based on InAs/GaAs quantum dots (QDs) in order to implement the IB material. The key operation principles of the IB theory are two photon sub-bandgap (SBG) photocurrent, and output voltage preservation, and both have been experimentally demonstrated at low temperature. At room temperature (RT), however, thermal escape/relaxation between the conduction band (CB) and the IB prevents voltage preservation. To improve this situation, we have produced and characterized the first reported InAs/AlGaAs QD-based IBSCs. For an Al content of 25% in the host material, we have measured an activation energy of 361 meV for the thermal carrier escape. This energy is about 250 meV higher than the energies found in the literature for InAs/GaAs QD, and almost 140 meV higher than the activation energy obtained in our previous InAs/GaAs QD-IBSC prototypes including a specifically designed QD capping layer. This high value is responsible for the suppression of the SBG quantum efficiency under monochromatic illumination at around 220 K. We suggest that, if the energy split between the CB and the IB is large enough, activation energies as high as to suppress thermal carrier escape at room temperature (RT) can be achieved. In this respect, the InAs/AlGaAs system offers new possibilities to overcome some of the problems encountered in InAs/GaAs and opens the path for QD-IBSC devices capable of achieving high efficiency at RT

    Time-of-Flight Detector for the Characterisation of Laser-Accelerated Protons

    Full text link
    [Otros] Lasers of ultra-high intensity focused on thin targets can form plasmas and release large numbers of charged particles with kinetic energies in the MeV region. The characterization of the accelerated particles requires suitable detectors. We present a time-of-flight detector based on a plastic scintillator optimized for the spectral analysis of laser-accelerated protons. All details of the detector layout are adapted to the expected properties of the proton beam. Particle energies will be separated by the time-of-flight technique over 200 cm path length. The active area (25 mm width) corresponds to a few mrad opening angle. With 5 mm thickness the detector is capable of absorbing protons up to 22.5 MeV. A very thin, aluminized mylar foil shields the scintillator from outer light while absorbing very little particle energy. The scintillation photons are measured with a photomultiplier tube coupled through a bundle of optical fibres. The coupling of these fibres via a PMMA light guide has been previously optimized in simulations with Litrani. A critical aspect of the detection of virtually large numbers of protons emitted in femtosecond pulses is the saturation of the PMT. The latter can be avoided by use of appropriate optical filters. With these the effective dynamic range starts from single particles over several orders of magnitude. Our time-of-flight detector has been calibrated at the Spanish National Accelerator Centre at Sevilla. Proton beams from 0.46 to 5.6 MeV from a tandem accelerator have been used to measure the relation between particle energy and pulse heights. Further tests have been performed with a pulsed electron beam to simulate many-particle hits.Project funded by the Spanish Ministry of Economy and Competitiveness and co-funded with FEDER¿s funds within the INNPACTO 2011 program, Grant No. IPT-2011-0862- 900000. This work was supported by the Spanish Plan Nacional de Investigacion Científica, Desarrollo e Innovacion Tecnológica (I+D+i) under Grant No. FIS2010-21216-CO2-01 and the Valencian Local Government under Grants PROMETEOII/2013/010 and ISIC 2011/013Seimetz, M.; Bellido, P.; Soriano, A.; Huertas, C.; García Lopez, J.; Jimenez-Ramos, MC.; Fernandez, B.... (2013). Time-of-Flight Detector for the Characterisation of Laser-Accelerated Protons. IEEE. 25-28. https://doi.org/10.1109/NSSMIC.2013.6829804S252

    Beam Spin Asymmetries in DVCS with CLAS at 4 .8 GeV

    Get PDF
    We report measurements of the beam spin asymmetry in Deeply Virtual Compton Scattering (DVCS) at an electron beam energy of 4.8 GeV using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The DVCS beam spin asymmetry has been measured in a wide range of kinematics, 1(GeV/c)2^2 <Q2<2.8<Q^2<2.8(GeV/c)2^2, 0.12<xB<0.480.12<x_B<0.48, and 0.1 (GeV/c)2^2 <t<0.8<-t<0.8(GeV/c)2^2, using the reaction \pEpX. The number of H(e,eγp)(e,e^{\prime}\gamma p) and H(e,eπ0p)(e,e^{\prime}\pi^0 p) events are separated in each (Q2,xB,t)(Q^2,x_B,t) bin by a fit to the line shape of the H(e,ep)X(e,e^{\prime}p)X Mx2M_x^2 distribution. The validity of the method was studied in detail using experimental and simulated data. It was shown, that with the achieved missing mass squared resolution and the available statistics, the separation of DVCS-BH and π0\pi^0 events can reliably be done with less than 5% uncertainty. The Q2Q^2- and tt-dependences of the sinϕ\sin\phi moments of the asymmetry are extracted and compared with theoretical calculations

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe
    corecore