9 research outputs found

    Purification of a Hydrophobic Elastin-Like Protein Toward Scale-Suitable Production of Biomaterials

    Get PDF
    Elastin-like proteins (ELPs) are polypeptides with potential applications as renewable bio-based high-performance polymers, which undergo a stimulus-responsive reversible phase transition. The ELP investigated in this manuscript—ELP[V2Y-45]—promises fascinating mechanical properties in biomaterial applications. Purification process scalability and purification performance are important factors for the evaluation of potential industrial-scale production of ELPs. Salt-induced precipitation, inverse transition cycling (ITC), and immobilized metal ion affinity chromatography (IMAC) were assessed as purification protocols for a polyhistidine-tagged hydrophobic ELP showing low-temperature transition behavior. IMAC achieved a purity of 86% and the lowest nucleic acid contamination of all processes. Metal ion leakage did not propagate chemical modifications and could be successfully removed through size-exclusion chromatography. The simplest approach using a high-salt precipitation resulted in a 60% higher target molecule yield compared to both other approaches, with the drawback of a lower purity of 60% and higher nucleic acid contamination. An additional ITC purification led to the highest purity of 88% and high nucleic acid removal. However, expensive temperature-dependent centrifugation steps are required and aggregation effects even at low temperatures have to be considered for the investigated ELP. Therefore, ITC and IMAC are promising downstream processes for biomedical applications with scale-dependent economical costs to be considered, while salt-induced precipitation may be a fast and simple alternative for large-scale bio-based polymer production

    Numerische Lösung großer strukturierter DAE-Systeme der chemischen Prozeßsimulation

    Get PDF
    Parallelizable numerical methods for solving large scale DAE systems are developed at the level of differential, nonlinear and linear equations. For this the subsystem-wise structure of the DAE systems based on unit-oriented modelling is explored. Partitionings are used to parallelize waveform relaxation and structured Newton methods. Initial values are computed with a modified Newton method. To solve large sparse systems of linear equations a special Gaussian elimination method is used. The algorithms were implemented on a CRAY C90 vector computer, as well as on both, moderately parallel CRAY J90 vector computers and massively parallel CRAY T3D machines. The methods were tested using several real life examples

    Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations

    No full text

    Safety of Retinopathy of Prematurity Examination and Imaging in Premature Infants

    No full text

    The digoxigenin:anti-digoxigenin (DIG) technology—a survey on the concept and realization of a novel bioanalytical indicator system

    No full text
    corecore