346 research outputs found

    Knowledge, attitude and perception of Pakistanis towards COVID-19; a large cross-sectional survey

    Get PDF
    Background: The Novel Coronavirus Disease (COVID-19) has created havoc globally as countries worldwide struggle to combat this pandemic. Since prevention and social isolation are known to be the only ways to prevent the spread of COVID-19, this has created challenges among the lower-middle income countries (LMIC) including Pakistan, as it battles between an under-resourced healthcare, an economic shutdown, and widespread myths and misconceptions. Therefore, a study was conducted to evaluate the knowledge, attitude and perceptions regarding COVID-19 as public understanding is vital to help facilitate the control of this outbreak.Methods: A pre-validated online questionnaire was distributed among the general population of Pakistan from 1st to 12th June 2020. Descriptive statistics were analyzed using SPSS v25. Adequate knowledge was assigned as a score of \u3e 4 (range: 0-8) and good perception as a score of \u3e 3 (range: 0-5). Chi-square test was used to determine the significance of difference in knowledge and perception of COVID-19 with socio-demographic characteristics. Logistic regression analysis was run to identify factors associated with adequate knowledge and perception. P \u3c 0.05 was considered as significant.Results: A total of 1200 respondents participated in this study with a wide range of age groups and education. Majority of the respondents had adequate knowledge (93.3%) with a mean score of 6.59 ± 1.35, and good perception (85.6%) with a mean score of 4.29 ± 0.82. Significant differences in knowledge and perception were observed among genders, age groups, education and between students and employees in the healthcare and non-healthcare department. A multivariate analysis revealed a higher educational status and female gender to be significant predictors of adequate knowledge and perception.Conclusions: Albeit the surge of COVID-19 cases in Pakistan, the participants demonstrated an overall adequate knowledge and good perception towards COVID-19. There is a need to follow the preventive protocols and dissemination of correct information through conducting educational interventions that target safe health practices and provide appropriate information on this infection

    Recombinant Spidroins Fully Replicate Primary Mechanical Properties of Natural Spider Silk

    Get PDF
    Dragline spider silk is among the strongest and toughest bio-based materials, capable of outperforming most synthetic polymers and even some metal alloys.1,2,3,4 These properties have gained spider silk a growing list of potential applications that, coupled with the impracticalities of spider farming, have driven a decades-long effort to produce recombinant spider silk proteins (spidroins) in engineered heterologous hosts.2 However, these efforts have so far been unable to yield synthetic silk fibers with mechanical properties equivalent to natural spider silk, largely due to an inability to stably produce highly repetitive, high molecular weight (MW) spidroins in heterologous hosts.1,5 Here we address these issues by combining synthetic biology techniques with split intein (SI)- mediated ligation for the bioproduction of spidroins with unprecedented MW (556 kDa), containing 192 repeat motifs of the Nephila clavipes MaSp1 dragline spidroin. Fibers spun from these synthetic spidroins display ultimate tensile strength (), modulus (E), extensibility (), and toughness (UT) of 1.03 +/- 0.11 GPa, 13.7 +/- 3.0 GPa, 18 +/- 6%, and 114 +/- 51 MJ/m3, respectively-equivalent to the performance of natural N. clavipes dragline silk.6 This work demonstrates for the first time that microbially produced synthetic silk fibers can match the performance of natural silk fibers by all common metrics (, E, , UT), providing a more dependable source of high-strength fibers to replace natural spider silks for mechanically demanding applications. Furthermore, our biosynthetic platform can be potentially expanded for the assembly and production of other protein-based materials with high MW and repetitive sequences that have so far been impossible to synthesize by genetic means alone

    α2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment

    Get PDF
    Slow-onset adaptive changes that arise from sustained antidepressant treatment, such as enhanced adult hippocampal neurogenesis and increased trophic factor expression, play a key role in the behavioral effects of antidepressants. alpha(2)-Adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of alpha(2)-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that alpha(2)-adrenoceptor agonists, clonidine and guanabenz, decrease adult hippocampal neurogenesis through a selective effect on the proliferation, but not the survival or differentiation, of progenitors. These effects persist in dopamine beta-hydroxylase knock-out (Dbh(-/-)) mice lacking norepinephrine, supporting a role for alpha(2)-heteroceptors on progenitor cells, rather than alpha(2)-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the alpha(2)-adrenoceptor subtypes, and decreased neurosphere frequency and BrdU incorporation indicate direct effects of alpha(2)-adrenoceptor stimulation on progenitors. Furthermore, coadministration of the alpha(2)-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation, the morphological maturation of newborn neurons, and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally, short-duration (7 d) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test, which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that alpha(2)-adrenoceptors, expressed by progenitor cells, decrease adult hippocampal neurogenesis, while their blockade speeds up antidepressant action, highlighting their importance as targets for faster acting antidepressants

    The elusive nature and diagnostics of misfolded Aβ oligomers.

    Get PDF
    Amyloid-beta (Aβ) peptide oligomers are believed to be the causative agents of Alzheimer's disease (AD). Though post-mortem examination shows that insoluble fibrils are deposited in the brains of AD patients in the form of intracellular (tangles) and extracellular (plaques) deposits, it has been observed that cognitive impairment is linked to synaptic dysfunction in the stages of the illness well before the appearance of these mature deposits. Increasing evidence suggests that the most toxic forms of Aβ are soluble low-oligomer ligands whose amounts better correlate with the extent of cognitive loss in patients than the amounts of fibrillar insoluble forms. Therefore, these ligands hold the key to a better understanding of AD prompting the search for clearer correlations between their structure and toxicity. The importance of such correlations and their diagnostic value for the early diagnosis of AD is discussed here with a particular emphasis on the transient nature and structural plasticity of misfolded Aβ oligomers

    Monitoring Insulin Aggregation via Capillary Electrophoresis

    Get PDF
    Early stages of insulin aggregation, which involve the transient formation of oligomeric aggregates, are an important aspect in the progression of Type II diabetes and in the quality control of pharmaceutical insulin production. This study is the first to utilize capillary electrophoresis (CE) with ultraviolet (UV) detection to monitor insulin oligomer formation at pH 8.0 and physiological ionic strength. The lag time to formation of the first detected species in the aggregation process was evaluated by UV-CE and thioflavin T (ThT) binding for salt concentrations from 100 mM to 250 mM. UV-CE had a significantly shorter (5–8 h) lag time than ThT binding (15–19 h). In addition, the lag time to detection of the first aggregated species via UV-CE was unaffected by salt concentration, while a trend toward an increased lag time with increased salt concentration was observed with ThT binding. This result indicates that solution ionic strength impacts early stages of aggregation and β-sheet aggregate formation differently. To observe whether CE may be applied for the analysis of biological samples containing low insulin concentrations, the limit of detection using UV and laser induced fluorescence (LIF) detection modes was determined. The limit of detection using LIF-CE, 48.4 pM, was lower than the physiological insulin concentration, verifying the utility of this technique for monitoring biological samples. LIF-CE was subsequently used to analyze the time course for fluorescein isothiocyanate (FITC)-labeled insulin oligomer formation. This study is the first to report that the FITC label prevented incorporation of insulin into oligomers, cautioning against the use of this fluorescent label as a tag for following early stages of insulin aggregation

    Xanthene Food Dye, as a Modulator of Alzheimer's Disease Amyloid-beta Peptide Aggregation and the Associated Impaired Neuronal Cell Function

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia. AD is a degenerative brain disorder that causes problems with memory, thinking and behavior. It has been suggested that aggregation of amyloid-beta peptide (Aβ) is closely linked to the development of AD pathology. In the search for safe, effective modulators, we evaluated the modulating capabilities of erythrosine B (ER), a Food and Drug Administration (FDA)-approved red food dye, on Aβ aggregation and Aβ-associated impaired neuronal cell function.In order to evaluate the modulating ability of ER on Aβ aggregation, we employed transmission electron microscopy (TEM), thioflavin T (ThT) fluorescence assay, and immunoassays using Aβ-specific antibodies. TEM images and ThT fluorescence of Aβ samples indicate that protofibrils are predominantly generated and persist for at least 3 days. The average length of the ER-induced protofibrils is inversely proportional to the concentration of ER above the stoichiometric concentration of Aβ monomers. Immunoassay results using Aβ-specific antibodies suggest that ER binds to the N-terminus of Aβ and inhibits amyloid fibril formation. In order to evaluate Aβ-associated toxicity we determined the reducing activity of SH-SY5Y neuroblastoma cells treated with Aβ aggregates formed in the absence or in the presence of ER. As the concentration of ER increased above the stoichiometric concentration of Aβ, cellular reducing activity increased and Aβ-associated reducing activity loss was negligible at 500 µM ER.Our findings show that ER is a novel modulator of Aβ aggregation and reduces Aβ-associated impaired cell function. Our findings also suggest that xanthene dye can be a new type of small molecule modulator of Aβ aggregation. With demonstrated safety profiles and blood-brain permeability, ER represents a particularly attractive aggregation modulator for amyloidogenic proteins associated with neurodegenerative diseases
    • …
    corecore