515 research outputs found

    Balancing truth error and manual processing in the PDQ system

    Get PDF
    Production Data Quality (PDQ) is a specialized pattern classifier whose main purpose is to assess independently the data quality of a production classifier. It accomplishes this by producing a high quality Truth from the source input, and then using the Truth to identify errors in the production classifier\u27s output data. Previous studies have shown close agreement between PDQ processing outcomes and a particular mathematical model of the system. In this study we describe and analyze an expanded model that addresses the potential tradeoff between Truth error and manual processing in PDQ, with an eye towards informing operational decisions about precision and efficiency. Using statistical data from the 2010 Census PDQ system as input, we examine the predictions of the new model in order to understand their potential usefulness. The outcomes show strong agreement between two methods for estimating Projected Truth error rate, supporting the validity of both methods as well as the existing static model. In addition, the new Projector model gives tight bounds on the projected manual processing rate and reveals a characteristic relationship between Projected Truth error and projected manual processing. We explore a practical application of this model for tuning PDQ, and we find an opportunity to achieve a 60% efficiency increase for the selected sample, while maintaining an acceptable degree of precision

    Weak G-band stars on the H-R Diagram: Clues to the origin of Li anomaly

    Full text link
    Weak G-band (WGB) stars are a rare class of cool luminous stars that present a strong depletion in carbon, but also lithium abundance anomalies that have been little explored in the literature since the first discovery of these peculiar objects in the early 50's. Here we focus on the Li-rich WGB stars and report on their evolutionary status. We explore different paths to propose a tentative explanation for the lithium anomaly. Using archive data, we derive the fundamental parameters of WGB (Teff, log g, log(L/Lsun)) using Hipparcos parallaxes and recent temperature scales. From the equivalent widths of Li resonance line at 6707 {\AA}, we uniformly derive the lithium abundances and apply when possible NLTE corrections following the procedure described by Lind et al. (2009). We also compute dedicated stellar evolution models in the mass range 3.0 to 4.5 Msun, exploring the effects of rotation-induced and thermohaline mixing. These models are used to locate the WGB stars in the H-R diagram and to explore the origin of the abundance anomalies. The location of WGB stars in the H-R diagram shows that these are intermediate mass stars of masses ranging from 3.0 to 4.5 Msun located at the clump, which implies a degeneracy of their evolutionary status between subgiant/red giant branch and core helium burning phases. The atmospheres of a large proportion of WGB stars (more than 50%) exhibit lithium abundances A(Li) \geq 1.4 dex similar to Li-rich K giants. The position of WGB stars along with the Li-rich K giants in the H-R diagram however indicates that both are well separated groups. The combined and tentatively consistent analysis of the abundance pattern for lithium, carbon and nitrogen of WGB stars seems to indicate that carbon underabundance could be decorrelated from the lithium and nitrogen overabundances.Comment: 13 pages, 3 figures, Accepted for publication in Astronomy and Astrophysic

    The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes

    Get PDF
    Mass spectrometry can be used to characterize multiprotein complexes, defining their subunit stoichiometry and composition following solution disruption and collision-induced dissociation (CID). While CID of protein complexes in the gas phase typically results in the dissociation of unfolded subunits, a second atypical route is possible wherein compact subunits or subcomplexes are ejected without unfolding. Because tertiary structure and subunit interactions may be retained, this is the preferred route for structural investigations. How can we influence which pathway is adopted? By studying properties of a series of homomeric and heteromeric protein complexes and varying their overall charge in solution, we found that low subunit flexibility, higher charge densities, fewer salt bridges, and smaller interfaces are likely to be involved in promoting dissociation routes without unfolding. Manipulating the charge on a protein complex therefore enables us to direct dissociation through structurally informative pathways that mimic those followed in solution

    A shared frequency set between the historical mid-latitude aurora records and the global surface temperature

    Full text link
    Herein we show that the historical records of mid-latitude auroras from 1700 to 1966 present oscillations with periods of about 9, 10-11, 20-21, 30 and 60 years. The same frequencies are found in proxy and instrumental global surface temperature records since 1650 and 1850, respectively and in several planetary and solar records. Thus, the aurora records reveal a physical link between climate change and astronomical oscillations. Likely, there exists a modulation of the cosmic ray flux reaching the Earth and/or of the electric properties of the ionosphere. The latter, in turn, have the potentiality of modulating the global cloud cover that ultimately drives the climate oscillations through albedo oscillations. In particular, a quasi 60-year large cycle is quite evident since 1650 in all climate and astronomical records herein studied, which also include an historical record of meteorite fall in China from 619 to 1943. These findings support the thesis that climate oscillations have an astronomical origin. We show that a harmonic constituent model based on the major astronomical frequencies revealed in the aurora records is able to forecast with a reasonable accuracy the decadal and multidecadal temperature oscillations from 1950 to 2010 using the temperature data before 1950, and vice versa. The existence of a natural 60-year modulation of the global surface temperature induced by astronomical mechanisms, by alone, would imply that at least 60-70% of the warming observed since 1970 has been naturally induced. Moreover, the climate may stay approximately stable during the next decades because the 60-year cycle has entered in its cooling phase.Comment: 18 pages, 11 figure

    Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context

    Get PDF
    IPCC Assessment Report 4 model projections suggest that the subtropical dry zones of the world will both dry and expand poleward in the future due to greenhouse warming. The US Southwest is particularly vulnerable in this regard and model projections indicate a progressive drying there out to the end of the 21st century. At the same time, the USA has been in a state of drought over much of the West for about 10 years now. While severe, this turn of the century drought has not yet clearly exceeded the severity of two exceptional droughts in the 20th century. So while the coincidence between the turn of the century drought and projected drying in the Southwest is cause for concern, it is premature to claim that the model projections are correct. At the same time, great new insights into past drought variability over North America have been made through the development of the North American Drought Atlas from tree rings. Analyses of this drought atlas have revealed past megadroughts of unprecedented duration in the West, largely in the Medieval period about 1000 years ago. A vastly improved Living Blended Drought Atlas (LBDA) for North America now under development reveals these megadroughts in far greater detail. The LBDA indicates the occurrence of the same Medieval megadroughts in the West and similar-scale megadroughts in the agriculturally and commercially important Mississippi Valley. Possible causes of these megadroughts and their implications for the future are discussed

    Diurnal changes in middle atmospheric H2O and O3: Observations in the Alpine region and climate models

    No full text
    International audienceIn this paper we investigate daily variations in middle atmospheric water vapor and ozone based on data from two ground-based microwave radiometers located in the Alpine region of Europe. Temperature data are obtained from a lidar located near the two stations and from the SABER experiment on the TIMED satellite. This unique set of observations is complemented by three different three-dimensional (3-D) chemistry-climate models (Monitoring of Stratospheric Depletion of the Ozone Layer (MSDOL), Laboratoire de Météorologie Dynamique Reactive Processes Ruling the Ozone Budget in the Stratosphere (LMDz-REPROBUS), and Solar Climate Ozone Links (SOCOL)) and the 2-D atmospheric global-scale wave model (GSWM). The first part of the paper is focused on the first Climate and Weather of the Sun-Earth System (CAWSES) tidal campaign that consisted of a period of intensive measurements during September 2005. Variations in stratospheric water vapor are found to be in the order of 1% depending on altitude. Meridional advection of tidal nature is likely to be the dominant driving factor throughout the whole stratosphere, while vertical advection becomes more important in the mesosphere. Observed ozone variations in the upper stratosphere and lower mesosphere show amplitudes of several percent in accordance with photochemical models. Variations in lower stratospheric ozone are not solely governed by photochemistry but also by dynamics, with the temperature dependence of the photochemistry becoming more important. The second part presents an investigation of the seasonal dependence of daily variations. Models tend to underestimate the H2O diurnal amplitudes, especially during summer in the upper stratosphere. Good agreement between models and observations is found for ozone in the upper stratosphere, which reflects the fact that the O3 daily variations are driven by the photochemistry that is well modeled

    Trends in Global Tropospheric Ozone Inferred from a Composite Record of TOMS/OMI/MLS/OMPS Satellite Measurements and the MERRA-2 GMI Simulation

    Get PDF
    Past studies have suggested that ozone in the troposphere has increased globally throughout much of the 20th century due to increases in anthropogenic emissions and transport. We show, by combining satellite measurements with a chemical transport model, that during the last four decades tropospheric ozone does indeed indicate increases that are global in nature, yet still highly regional. Satellite ozone measurements from Nimbus-7 and Earth Probe Total Ozone Mapping Spectrometer (TOMS) are merged with ozone measurements from the Aura Ozone Monitoring Instrument/Microwave Limb Sounder (OMI/MLS) to determine trends in tropospheric ozone for 19792016. Both TOMS (19792005) and OMI/MLS (20052016) depict large increases in tropospheric ozone from the Near East to India and East Asia and further eastward over the Pacific Ocean. The 38-year merged satellite record shows total net change over this region of about +6 to +7 Dobson units (DU) (i.e., 15 %20 % of average background ozone), with the largest increase (4 DU) occurring during the 20052016 Aura period. The Global Modeling Initiative (GMI) chemical transport model with time-varying emissions is used to aid in the interpretation of tropospheric ozone trends for 19802016. The GMI simulation for the combined record also depicts the greatest increases of +6 to +7 DU over India and East Asia, very similar to the satellite measurements. In regions of significant increases in tropospheric column ozone (TCO) the trends are a factor of 22.5 larger for the Aura record when compared to the earlier TOMS record; for India and East Asia the trends in TCO for both GMI and satellite measurements are +3 DU decade(exp 1) or greater during 20052016 compared to about +1.2 to +1.4 DU decade(exp 1) for 19792005. The GMI simulation and satellite data also reveal a tropospheric ozone increases in +4 to +5 DU for the 38-year record over central Africa and the tropical Atlantic Ocean. Both the GMI simulation and satellite-measured tropospheric ozone during the latter Aura time period show increases of +3 DU decade1 over the N Atlantic and NE Pacific
    corecore