20 research outputs found

    Glycol chitosan-based nanogel as a potential targetable carrier for siRNA

    Get PDF
    A self-assembled glycol chitosan nanogel (GC) is synthesized by chemically grafting hydrophobic chains onto a polysaccharide, which is comprehensively characterized. The obtained macromolecular micelle is decorated with folate-conjugated poly(ethylene glycol) (PEG) (GCFA). An average size distribution of 250 and 200 nm is observed, respectively for the GC and GCFA nanogels. Differential cell localization is observed on incubating the materials with HeLa cells. Whereas the GC nanogel is detected on the cell surface, GCFA is localized in the cytoplasm. The cell viability is not compromised by the nanogels. Interestingly, GC nanogel is poorly internalized by bone marrow derived macrophages (BMDMs), and GCFA is not phagocytosed. Given its ability to complex siRNA, the targetable GC nanogel can be a promising vehicle for siRNA delivery.Paula Pereira thanks FCT, the Ph.D. grant ref SFRH/BD/64977/2009

    Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells

    Get PDF
    Cancer gene therapy requires the design of non-viral vectors that carry genetic material and selectively deliver it with minimal toxicity. Non-viral vectors based on cationic natural polymers can form electrostatic complexes with negatively-charged polynucleotides such as microRNAs (miRNAs). Here we investigated the physicochemical/biophysical properties of chitosan–hsa-miRNA-145 (CS–miRNA) nanocomplexes and the biological responses of MCF-7 breast cancer cells cultured in vitro. Self-assembled CS–miRNA nanocomplexes were produced with a range of (+/−) charge ratios (from 0.6 to 8) using chitosans with various degrees of acetylation and molecular weight. The Z-average particle diameter of the complexes was <200 nm. The surface charge increased with increasing amount of chitosan. We observed that chitosan induces the base-stacking of miRNA in a concentration dependent manner. Surface plasmon resonance spectroscopy shows that complexes formed by low degree of acetylation chitosans are highly stable, regardless of the molecular weight. We found no evidence that these complexes were cytotoxic towards MCF-7 cells. Furthermore, CS–miRNA nanocomplexes with degree of acetylation 12% and 29% were biologically active, showing successful downregulation of target mRNA expression in MCF-7 cells. Our data, therefore, shows that CS–miRNA complexes offer a promising non-viral platform for breast cancer gene therapy

    Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015

    Get PDF
    Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x-ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion-π and π-π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation
    corecore