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 9 

ABSTRACT 10 

Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or 11 

dissociation of molecular complexes. Over the last five years much work has been published on the 12 

interpretation of ITC data for single binding and multiple binding sites. As over 80% of ITC papers are 13 

on macromolecules of biological origin this interpretation is challenging. Some researchers have 14 

attempted to link the thermodynamics constants to events at the molecular level. This review 15 

highlights work done using binding sites characterised using x-ray crystallography techniques that 16 

allow speculation about individual bond formation and the displacement of individual water 17 

molecules during ligand binding and link these events to the thermodynamic constants for binding. 18 

The review also considers research conducted with synthetic binding partners where specific binding 19 

events like anion-π and π-π interactions were studied. The revival of assays that enable both 20 

thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly published 21 

criticism of ITC research from a physical chemistry perspective is appraised and practical advice 22 

provided for researchers unfamiliar with thermodynamics and its interpretation. 23 

 24 

INTRODUCTION TO RESEARCH BETWEEN 2011-2015 25 

Research into isothermal titration calorimetry (ITC) started around 25 years ago as high-sensitivity 26 

calorimetry instruments were developed. The publication of Ernesto Freire and coworkers’ article 27 

entitled “Isothermal Titration Calorimetry” in 1990 introduced this technique to researchers 28 

interested in studying binding interactions.
1
 Since 1990 there has been steady rise in research 29 

publications on ITC (Figure 1) encouraged by the release of commercial instrumentation that made 30 

this method accessible to a wide population of scientists. There are now around 600 to 700 peer-31 

reviewed papers containing research using ITC published annually and there are no signs of this 32 

growth stopping. The field of protein chemistry has benefited most from ITC dominating the 33 

published research though synthetic chemists have increasingly found ITC useful (Figure 2). Research 34 

into lipids has used ITC to study demicellation with success and binding studies using nucleic acids, 35 

carbohydrates and synthetic molecules are also represented. 36 

Despite the steady increase in research using ITC there have been no significant technical advances 37 

in ITC instrumentation since 2010. Robotic automated instruments were already on the market in 38 
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2010 and ITC can be considered a mature technology. There have been improvements in software 39 

making the technology increasingly user friendly. The published ITC research is dominated by simple 40 

one-site binding interactions where the mathematics and interpretation of the results are relatively 41 

simple. ITC-based techniques like thermal analysis of enzyme kinetics,
2,3

 continuous ITC
4
 and protein 42 

folding
5
 have received minimal uptake by the research community despite their apparent value. 43 

There have been some recent advances in ITC-based techniques that are worth noting including 44 

kinITC which collects kinetic and thermodynamic information for binding interactions,
6
 and advances 45 

in ITC displacement assays for high-affinity binding reactions.
7,8

  46 

The increased use of ITC to study binding interactions with synthetic molecules is worthy of note as 47 

it provides highly defined molecules for binding studies. Protein binding studies have always been 48 

complicated by the fact that many binding sites are not well characterised and the inherent flexibility 49 

of protein molecules can make interpretation of binding site studies problematic. Progress has been 50 

made on the interpretation of ITC data since 2010. The strengths and weaknesses of ITC are also 51 

better understood. This knowledge however, has not uniformly trickled down to researchers 52 

undertaking ITC analysis where presentation of ITC data and the interpretation of thermodynamic 53 

parameters could be improved. 54 

A recent development has been the advent of the Journal of Visualized Experiments (JoVE). JoVE is a 55 

PubMed-indexed video journal and ITC methods have been demonstrated by this journal.
9-11

 This is 56 

particularly useful for researchers unfamiliar with the practical applications of ITC and can form a 57 

useful component in student or technician training. 58 

Between 2003 and 2012 the Journal of Molecular Recognition published annual reviews of ITC 59 

research covering the years 2002 to 2010.
 12-20

 The authors John Ladbury, Ilian Jelesarov, Brett 60 

Collins, Robert Falconer and their co-authors not only reviewed the literature but provided expert 61 

advice on ITC use for the scientific community.
 
The purpose of this current review is to appraise the 62 

developments from the last five years since the last annual ITC review and provide advice on the 63 

interpretation of ITC data. The author identified more than 2,500 articles reporting the use of ITC 64 

between January 2011 and December 2015, after searching the Web of Science and Scopus 65 

databases. This number of papers is impractical to cite in full so the author has selected 66 

approximately 200 that he feels best represents the field and apologises for any resulting omissions. 67 

These references have been classified into the following broad categories: 68 

 (i) References cited in the introduction.
1-20

 69 

(ii) Review and perspective articles.
21-29 

70 

(iii) Methods papers.
30-52 

71 

(iv) Protein : protein interactions.
53-70 

72 

(v) Protein interactions with other ligands.
71-143 

73 

(vi) Lipids, micelles and membranes.
144-151 

74 

(vii) Polysaccharides.
152-155 

75 

(viii) Nucleic acids.
156-169 

76 

(ix) Synthetic chemicals, polymers and nanoparticles.
170-207 

77 

(x) Enzyme kinetics.
208-217 

78 

(xi) Pre-2011 and non-ITC references.
218-234 

79 

 80 
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 81 

INTERPRETATION OF SINGLE BINDING SITE ITC DATA 82 

Single binding site interactions are the simplest to study using ITC. If the c-value is between 1 and 83 

1000 enough of the sigmoidal titration curve can be captured from which the stoichiometry, 84 

disassociation constant (KD), change in free energy (ΔG) and change in enthalpy (ΔH) can be directly 85 

measured. From this the change in entropy (ΔS), can be calculated.
218

 Note c = M0 / KD where M0 is 86 

the initial concentration of the binding partner in the cell.  Where the c-value is below 1 the 87 

stoichiometry and change in enthalpy (ΔH) values are problematic and where the c-value is greater 88 

than 1000 the disassociation constant (KD) and change in free energy (ΔG) values are inaccurate. It is 89 

also worth noting that the change in entropy value (ΔS) is calculated from the equation ΔG= ΔH -TΔS 90 

and will contain any errors from both the ΔG and ΔH measurements. An excellent paper by Joel 91 

Tellinghuisen written in 2012 provides further guidance for researchers designing ITC protocols to 92 

generate precise thermodynamic data.
48 

93 

The first hurdle many researchers face is understanding the thermodynamic terms. While the 94 

definitions for change in enthalpy and change in free energy definitions are fairly obvious and there 95 

are some excellent text books on the subject.
219-220

 The concept of entropy can be difficult to 96 

comprehend. Entropy can be described as a measure of disorder within a system as well as the 97 

energy state of a system.
221

 For the interpretation of aqueous systems many authors rely on the 98 

concept of entropy being the movement from ordered to disordered states (and vice versa) whereas 99 

the idea of moving from a high energy state to a lower energy state is probably more accurate and 100 

avoids the need to attribute structures to water that are questionable. The water around methyl 101 

groups is an example where structural attributes have been used to describe water at the interface. 102 

In the past these structures were described as being ice-like
222

 and more recently they have been 103 

described as clathrate-like cages
223

 or networks.
24 

A simpler way of describing the water at the 104 

interface with a methyl group is water that cannot hydrogen bond with the methyl group; this water 105 

has a higher energy state than water surrounded by water where it can exchange protons freely. The 106 

calculated entropy from ITC data is the sum of the entropies within the sample being studied and 107 

will involve the ligand, its target, the water and any co-solutes (buffer, salts, etc.) within the sample. 108 

This complexity makes it difficult to ascribe individual changes during binding (like displacement of 109 

individual water molecules) to changes in entropy.
24

 For further reading on the interpretation of 110 

entropy that is written in a highly accessible manner try Frank Lambert’s paper “A modern view of 111 

entropy”.
224 

112 

The work using ITC to study drug candidates’ interaction with drug targets has made researchers in 113 

this field increasingly aware of the complexity that is occurring at  drug binding sites. This has been 114 

helped by the known crystal structure of some of the drug targets that were studied.
 24

 This enabled 115 

speculation about the specific bond formation occurring and the displacement of specific water 116 

molecules during binding.
 

117 

During a binding interaction between a protein and a ligand the following occurs: 118 

1. The ligand has to penetrate the protein’s hydration layer (which may present an energetic barrier) 119 

2. There is displacement of water from the part of the protein’s and the ligand’s surface where the 120 

binding occurs (desolvation). 121 
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3. There is also displacement of any co-solutes present at the protein surface. This is particularly 122 

important where electrostatic interaction plays a role as charged co-solutes are often present at the 123 

binding site and may need displacing. 124 

4. Short-range bond formation (hydrogen bonding, van der Waal’s interaction, pi-cation interactions, 125 

etc.) between the protein and the ligand will occur. 126 

5. There is the possibility of proton exchange between both binding partners and the buffer. 127 

6. There is the possibility of conformational change of the protein; this is particularly important 128 

where allostery plays a role in the protein’s function. 129 

7. Finally there will be a rearrangement of the water adjacent to the ligand-protein interface. 130 

Each of these events during binding will have an effect on net ∆H and ∆S values. 131 

The role of the protein’s hydration layer on binding interactions is contentious as the methods for 132 

measuring this phenomenon like terahertz spectroscopy are still specialist techniques and not 133 

familiar to most ITC users. There is evidence that a protein’s hydration layer is more extensive and 134 

complex than previously believed.
225-227

 It has also been shown that cosolutes can modify the 135 

hydration layer.
228-229

 There is scope for future work using ITC in conjunction with low frequency 136 

analysis of water.  137 

 138 

Gerhard Klebe’s group used inhibitor binding to thermolysin
24,76-77,108

 to study the important 139 

contribution of water displacement and rearrangement on the thermodynamics of inhibitor binding. 140 

This was not a trivial undertaking. Firstly the structure was defined by x-ray crystallography at the 141 

BESSY beamline in Berlin. This enabled the binding site to be well characterised and the possible 142 

location of bound water molecules determined. In one study the ligands only differed in the 143 

replacement of a methyl with a carboxyl group.
76

 The difference in thermodynamics of binding was 144 

attributed to the carboxyl group disrupting the water network around the filled binding site. A 145 

second set of ligands were used with substitutions altering the ligands hydrophobicity. As the 146 

thermolysin binding site is a hydrophobic pocket, the interaction would usually be considered as an 147 

example hydrophobic interaction and would be entropy driven.
77

 Interestingly, the addition of a 148 

methyl group to the ligand resulted in an enthalpy-driven improvement in binding whereas addition 149 

of further hydrophobicity to the ligand gave a predicted entropy-driven improvement. This was 150 

ascribed to changes to the water at the surface of the protein ligand complex.
77,108

 The conclusion 151 

from this research was that water played a minor role in the change in free energy but had a major 152 

effect on change in enthalpy and entropy. The work did demonstrate our current inability to 153 

consistently predict the thermodynamic profiles associated with relatively simple changes in ligand 154 

structure even when the binding sitewas well characterised.
24 

155 

 156 

The classical approach to the thermodynamics of binding would be to consider solvation as implicit 157 

within the activity coefficients of the binding partners. Brian Castellano and Daryl Eggers argued that 158 

for binding reactions in aqueous environments, the water should be treated as a coreactant. So the 159 

binding equation was proposed that took water into account, ΔG
0
 = -RT lnKi –[Q]i ΔGi

H2O
 where ΔG

0
 is 160 

the standard free energy constant, [Q]i is the concentration of the complex, Ki is the association 161 

constant and ΔGi
H2O

 is the desolvation energy, all in a specific solution (i).
175

 The example used was 162 

calcium ion binding to EDTA conducted at different reactant concentrations and temperatures. 163 

When -RT lnKi
 
was plotted against [Q]i the y-intercept gave the ΔG

0
 and the slope the ΔGi

H2O
 values. 164 

An observation was that Ki changes with concentration and that the ΔGi
H2O

 /RT had a near linear 165 
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relationship to 1/T. This research provides a method to determine values for the desolvation energy 166 

associated with binding interactions. 167 
 

168 

Displacement of co-solutes during binding is often overlooked during ITC studies.  An example where 169 

co-solute displacement was studied used metal cation binding to the synthetic p-170 

sulfonatocalix[4]arene (a ring structured molecule with four acidic sulpho groups where a metal ion 171 

can bind).
181

 The presence of a counter ion such as sodium had a considerable effect on the 172 

thermodynamics of binding. While p-sulfonatocalix[4]arene is a synthetic molecule the principle is 173 

the same for proteins and other macromolecules where ions commonly interact with oppositely 174 

charged constituent parts. Most ITC binding studies are in buffered solutions where the co-solutes 175 

often comprise sodium chloride and a buffer that will interact with charged amino acid side chains 176 

and affect the thermodynamics of any binding that involve electrostatic interaction. George 177 

Whiteside’s group used the pocket in human carbonic anhydrase II to examine the role of anions on 178 

binding.
95

 This work which combined ITC with x-ray crystallography and molecular dynamic 179 

simulation suggested low charge density anions can associate with hydrophobic regions within the 180 

binding pocket, altering the charge and water structure in and round the pocket. 181 

 182 

Proton exchange between either binding partner with the buffer received much attention before 183 

2011.
20

 A recent study of ligand binding to a t-RNA binding protein provided a good example of 184 

proton transfer during ITC experimentation having a marked effect on change in enthalpy.
119

  185 

Further analysis was able to identify which components of the binding partners were responsible for 186 

the proton exchange with the buffer. 187 

 188 

The take home message is that interpretation of ITC data for binding interactions in aqueous 189 

systems has to take displacement of water, co-solutes and protons into consideration. Commonly 190 

used solutions like phosphate buffered saline contain the high-charge density phosphate anion 191 

which binds relatively strongly to positive charged side chains and can interfere with ligand binding 192 

to proteins (personal observation). Anyone considering selection of low charge density ions like 193 

guanidinium hydrogen chloride or iodine to improve protein solubility would be advised to read 194 

George Whiteside’s paper before proceeding.
95

 Chemicals like DMSO are commonly used to help 195 

solubilise ligands that have low-solubility in water but the effect of DMSO on the binding partners 196 

and their respective hydration layers has to be taken into consideration. The choice of the buffer and 197 

other cosolutes to be used during ITC experiments is very important and needs careful 198 

consideration. 199 

 200 

INTERPRETATION OF MULTIPLE BINDING SITE ITC DATA 201 

The study of proteins and protein complexes with multiple binding sites is of particular interest to 202 

scientists interested in allosteric regulation where the binding of one molecule to a site affects the 203 

binding of a second molecule to a separate site on the same protein or protein complex. Where the 204 

two molecules are different (heterotropic allostery) this phenomenon is easily studied using ITC as 205 

the ∆G, ∆H and ∆S values for the second binding event will be different for the protein with and 206 

without the first molecule present. An example of heterotropic allostery is the formation of the 207 

complex between mRNA containing poly(A) sequences with the translation factors polyadenylate-208 
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binding protein-1 (PABP) and scaffolding protein eIF4G.
130

 The ITC data gave clear evidence of 209 

cooperative binding of eIF4G and Poly(A) to PABP.  210 

Allostery can also occur where the multiple bind sites on the protein or protein complex bind the 211 

same ligand (homotropic allostery). An example of this was the binding of acetyl coenzyme A to the 212 

dimeric protein aminoglycoside N-(6′)-acetyltransferase-Ii.
96

 This study used a combination of ITC, 213 

circular dichroism, and nuclear magnetic resonance spectroscopy to quantify the structural, dynamic 214 

and thermodynamic aspects of allostery. The ITC binding isotherms are often non-sigmoidal due to 215 

the different ∆G and ∆H values of the different binding events. Homotropic allostery presents the 216 

challenge of calculating meaningful thermodynamic constants for the multiple binding sites 
31

 and 217 

for detecting positive and negative cooperativity.
34 

While the mathematics for calculating ∆G, ∆H 218 

and ∆S values for multiple binding sites has been determined and informative simulations have been 219 

undertaken
31,34

 it is worth remembering that relatively small errors in the raw ITC data (especially 220 

where few titrations are present for critical parts of the thermogram) can generate plausible but 221 

misleading ∆G, ∆H and ∆S values for the binding sites. 222 

Non-specific binding can be easily confused with multiple binding site interactions. There are many 223 

molecules that will bind to proteins, nucleic acids and synthetic molecules, while not targeting 224 

individual binding sites. Possibly the best studied family of molecules that bind “promiscuously” to 225 

proteins are the polyphenolics.
79,107,117,143

 It is believed that polyphenolics hydrogen bond with the 226 

peptide backbone of a protein. The complicating factor in studying non-specific binding of 227 

polyphenolics to proteins is their propensity to cross-link proteins which can displace water around 228 

the proteins and contribute to the recorded ∆G and ∆H values (personal observation). The ITC 229 

binding isotherms are often non-sigmoidal and could be interpreted as evidence of allostery if cross-230 

linking was not taken into consideration.
107

  231 

 232 

METHODOGICAL ADVANCES 233 

kinITC assay to capture both thermodynamic and kinetic information. Burnouf et al 2012 proposed 234 

a method for collecting both kinetic and thermodynamic data from ITC experimentation that could 235 

be used for simple binding interactions and more complex processes.
6
 The example they studied 236 

included the binding of the inhibitor Nevirapine to HIV-1 reverse transcriptase, and the binding of 237 

thiamine pyrophosphate (TPP) to the Escherichia coli riboswitch present in the 5′-UTR of the thiC 238 

mRNA which folded on binding of TPP. The paper’s supplementary information provided details on 239 

instrument response time, injection times and mixing times for their Microcal ITC200 which had to 240 

be taken into account if this method was to be reliable. Work on the partial validation of kinITC used 241 

surface plasmon resonance as the gold standard method for determining the kinetic on and off 242 

constants.  The collection of kinetic data using an ITC is obviously attractive as it does not require a 243 

tether to a solid support but the assay must be well validated and the instrument response time, 244 

injection times and mixing times for the instrument known.  245 

The collection of both kinetic and thermodynamic data has also been applied to study RNA helical 246 

packing.
166

 By running the assay at different temperatures they were able to calculate the Arrhenius 247 

activation energy and Eyring transition state entropy as well as the thermodynamic parameters for 248 

GAAA tetraloop–receptor interaction in magnesium and potassium solutions.  249 
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ITC assays for the quantification of high-affinity binding interactions. The standard ITC 250 

displacement assay used to study high-affinity interactions has been around since 2000 and has 251 

been used to study a range of high-affinity interactions.
230,231

 This technique uses the displacement 252 

of a moderate-affinity ligand to lower the apparent affinity of a high-affinity ligand. A displacement 253 

assay using weakly binding fragments to thrombin was run in parallel with direct (low-C) assay and 254 

showed both methods yielded valid disassociation constants.
44

 The direct low-C titrations, however,  255 

have highly questionable stoichiometry. The displacement assay also had a drawback that different 256 

displaced ligands affected the enthalpic values indicating that the choice of the displaced ligand was 257 

important and that experimental conditions need to be standardised so comparison can be made 258 

between different fragments. This phenomenon was ascribed to the solvation structure and protein 259 

dynamics of the initial protein–ligand complexes before displacement occured.
44 

The displacement 260 

method has a serious drawback as the high-affinity ligand of interest has to be soluble at high 261 

concentrations (>100 μM). Many high-affinity drugs have low solubility in water making the 262 

traditional displacement assay impractical. The competition assay published in Krainer et al 2012 can 263 

be used to study low solubility high affinity ligands.
7
 In this assay the receptor was titrated into a 264 

mixture of competing high- and moderate-affinity ligands which generated a biphasic isotherm that 265 

was be used to quantify disassociation constants (KD) and binding enthalpies (ΔH) for both ligands. 266 

Another alternative approach was a single-experiment displacement assay.
8
 The assay involved the 267 

titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to 268 

the receptor with excess moderate-affinity ligand. The isotherm was also biphasic and was used to 269 

quantify KD and ΔH values for both high-affinity and medium-affinity ligands competing for the same 270 

binding site. This provides three different strategies for analysing problematic high-affinity binding 271 

interactions.
 

272 

Software. Researchers using ITC are recommended to appraise the software NITPIC (which claims to 273 

be superior to Origin) and SEDPHAT that have been developed to assist in analysis of ITC data.
39,45,52

 274 

The program NITPIC can be downloaded for free from 275 

http://biophysics.swmed.edu/MBR/software.html. SEDPHAT can be downloaded from 276 

http://sedfitsedphat.nibib.nih.gov/software free of charge. AFFINImeter produce commercial 277 

software that can be used for analysis of displacement assays, micellization experiments, kinITC, the 278 

application of complex models for complex interactions, and ligand induced conformational change. 279 

At the time of writing this software was only suitable for MicroCal data but they were intending to 280 

release the software compatible with other brands of ITC.  281 

 282 

SYNTHETIC MOLECULES 283 

Over 80% of research using ITC is with macromolecules of biological importance including proteins, 284 

nucleic acids, lipids and carbohydrates. Macromolecules are poorly suited to studying specific 285 

interactions. The use of ITC with synthetic molecules provides a range of opportunities to study 286 

binding interactions using receptors that are simpler and well defined. This has enabled hypotheses 287 

regarding interactions in aqueous solutions to be tested using well defined synthetic ligands. This 288 

information can then be transferred to help our understanding of the interactions that are occurring 289 

in proteins, nucleic acids, etc. 290 
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There are several papers studying cation-π; anion-π; and π-π interactions. In one study ciprofloxacin 291 

hydrochloride was used in an aqueous solution.
197

 Ciprofloxacin hydrochloride has a quinolone ring 292 

and a protonated amine. ITC was used alongside H
1
 NMR spectroscopy to demonstrate one-293 

dimensional aggregates formed by π-π stacking and dimer formation brought together by cation-π 294 

interaction. Anion-π were studied in aqueous solutions with a tren (tris(2-aminoethyl)amine) 295 

molecule attached to a nitroso-amino-pyrimidine.
173

 A range of anions were shown to interact with 296 

the heteroaromatic ring. A large entropic contribution favoured association and was attributed to 297 

displacement of water around the hydrophobic pyrimidine surface during association suggesting in 298 

this case water displacement played an important contribution to this anion-π interaction. Anion-π 299 

interactions were also studied using halides (Cl−, Br−, and I−) and “two-wall” calix[4]pyrrole 300 

receptors with two six-membered aromatic rings in organic solvents.
170

 The number and electron 301 

drawing character of aromatic substitutions increased the positive electrostatic surface potential of 302 

the centre of the six member ring enabling the anion-π interaction. The interaction of fullerenes to a 303 

buckycatcher (comprised of two corannulene subunits tethered together) in a range of organic 304 

solvents is an example of binding with a strong π-π interaction component.
189

 In a binding 305 

interaction where solvent displacement played a significant role, the change in entropy played a 306 

minor role in driving binding which surprised the authors. 307 

A synthetic octa-acid host with a hydrophobic pocket was used to study the effect of anions on 308 

binding of small molecule ligands.
182

  In the case of low charge density anions like ClO3
-
 the anion 309 

was found to enhance affinity at low concentrations and weaken it at high concentrations.  At higher 310 

ClO3
- 
concentrations, for the small molecule ligand to bind to the hydrophobic pocket required 311 

displacement of the anion. This supports the theory of Kim Collins that explains the behaviour of low 312 

charge density anions and protein solubility in terms of low charge density anion interaction with 313 

hydrophobic surfaces on the protein.
232

 While the synthetic octa-acid host study is ongoing it does 314 

provide the opportunity to challenge or confirm the theories for low charge density anion 315 

interaction with hydrophobic pockets at a nanometer-scale and complements work undertaken with 316 

binding to proteins in the presence of low charge density anions that observe similar effects.
95

 It also 317 

has the capacity to challenge theories about the activity of medium and high charge density anion 318 

indirect interaction through competition for solvent.
233 

319 

In an interesting study, allostery was mimicked using a dual-cavity basket which had six alanine 320 

residues at the entrance of two juxtaposed cavities that was designed to trap organophosphorus 321 

nerve agents.
177

 Molecular dynamic simulation and H
1
 NMR spectroscopy suggested a negative 322 

homotropic cooperativity of binding in water. This is an attractive candidate for ITC studies as it 323 

could be used to validate computer simulations of negative cooperativity binding. 324 

 325 

CAUTIONARY NOTE 326 

In 2015, Brian Pethica from Princeton University wrote a highly critical paper entitled “Misuse of 327 

thermodynamics in the interpretation of isothermal titration calorimetry data for ligand binding to 328 

proteins” 
26

 which should serve as a cautionary note for scientists who don’t have a strong 329 

background in thermodynamics. Pethica’s critique, however, should not dissuade researchers from 330 

using ITC to study binding as long as they are aware of the assumptions that predicate the 331 

calculation of the thermodynamic constants.  332 
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The first key assumption behind the equation ΔG=ΔH-TΔS (where ΔH is the change in enthalpy, ΔG is 333 

the change in free energy and ΔS is the change in entropy) is that the binding reaction is reversible 334 

and that equilibrium has been reached. This assumption is acceptable for most binding reactions but 335 

it should be remembered that allosteric change in a binding partner could prevent the ligand 336 

returning to the solution. The most common error in published ITC data was too shorter time 337 

between titrations which does not allow the peak to return to the baseline (i.e. equilibrium was not 338 

reached before the next injection) and this key assumption was not met. 339 

The second assumption is that the ligand and the macromolecule (protein, nucleic acid or synthetic 340 

molecule) are totally soluble. In practice many ligands such as drug candidates have low solubility in 341 

water. In some cases ligand preparations may include insoluble along with the soluble ligand. When 342 

injected into the ITC cell some of the insoluble material will dissolve and there will be a ΔH 343 

associated with this event. The use of control titrations of ligand into buffer (without the 344 

macromolecule present) and titrations of buffer (without the ligand) into the macromolecule can be 345 

used to detect this type of event occurring. The use of these controls should be a normal part of ITC 346 

experimental design.  347 

The third assumption is that macromolecule solutions are ideal (i.e. there are no macromolecule- 348 

macromolecule interactions, no macromolecule-cosolute interactions, and no interactions between 349 

macromolecule-ligand complexes).  Macromolecule solutions are not ideal. Cosolutes interact with 350 

macromolecules both by direct binding and indirectly by modifying their hydration layers.
 233-235

   351 

Macromolecules similarly interact with each other or compete with each other for water for their 352 

hydration layers.
 226,229 

 The issue of cosolutes altering the thermodynamics of ligand binding is 353 

unavoidable and the researcher has to accept that the thermodynamic constants derived from their 354 

research are for the solution conditions used and will change if different buffer, pH or temperatures 355 

are used. The issue of macromolecule-macromolecule interactions is also unavoidable. Even a target 356 

like EDTA demonstrated concentration-dependant thermodynamics of binding to calcium ions.
174

 357 

This was attributed to the desolvation of the binding partners and demonstrated that undertaking 358 

ITC at several target concentrations will provide a better understanding of the non-ideality of 359 

macromolecule solutions. 360 

To overcome the criticism from physical chemists like Brian Pethica, the author recommends that 361 

researchers should do the following: 362 

�� Outline the assumptions behind the thermodynamic calculations in their papers. 363 

�� Make sure titration peaks do reach the baseline (achieving equilibrium). 364 

�� Run the control titrations of ligand into buffer (without the macromolecule present) and 365 

buffer (without the ligand) into the macromolecule as a standard part of the ITC 366 

experimentation then present these thermograms in the paper or as supplementary 367 

information. 368 

�� Specify the conditions used for the binding experiments including the composition of both 369 

titrant solution and the solution in the sample cell (include pH and temperature). Also include 370 

the specific titration strategy used. While this does not avoid non-ideality of macromolecule 371 

solutions it does define the experimentally derived thermodynamic constants for the precise 372 

conditions used. 373 
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�� For experimentation with low solubility ligands, be careful that the ligand is totally dissolved 374 

and if chemicals like DMSO are used to improve ligand solubility, consider their potential 375 

interaction with the binding partners. 376 

 377 

REQUEST FOR RAW DATA PUBLICATION 378 

The author would like to suggest that editors and reviewers of articles containing ITC data should 379 

request that the raw ITC data (the experimentally derived thermograms) should be published in the 380 

paper or as supplementary material. There are many ITC papers where the calculated binding 381 

isotherms alone are published without the experimentally derived thermograms. To the experienced 382 

ITC operator the raw data contains a wealth of information and should be provided to verify that the 383 

analysis was done to a high standard. The raw data can confirm that the baseline was steady and 384 

equilibrium was reached before the next injection. The raw data can also be used to better 385 

understand the kinetics of the interaction and detect mixed interactions (e.g. rapid binding followed 386 

by slow aggregation). It is the author’s opinion that much useful data is being lost and that 387 

confidence in published data is eroded due to the frequent failure to publish raw ITC data. 388 

 389 

Figure Titles 390 

Figure 1 Articles written with isothermal titration calorimetry content since 1990 sourced from the 391 

Web of Science ™. 392 

Figure 2 Subject material studied using isothermal titration calorimetry in 2014. Note protein related 393 

research accounted for 67% of the articles. Synthetic compounds were 17%, lipids and micelles were 394 

6%, nucleic acids were 4%, carbohydrates were 3% and the remainder were 3% of the articles.  395 

396 
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