

This is a repository copy of Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/103087/

Version: Accepted Version

Article:

Falconer, R.J. orcid.org/0000-0002-9912-9036 (2016) Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015. Journal of Molecular Recognition, 29 (10). pp. 504-515. ISSN 0952-3499

https://doi.org/10.1002/jmr.2550

This is the peer reviewed version of the following article: Falconer, R. J. (2016) Applications of isothermal titration calorimetry – the research and technical developments from 2011 to 2015. J. Mol. Recognit., 29: 504–515., which has been published in final form at http://dx.doi.org/10.1002/jmr.2550. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html).

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Journal of Molecular Recognition

Online Journal: =Free Color =More Color =Faster Publication

Applications of isothermal titration calorimetry - the research and technical developments from 2011-15.

Journal:	Journal of Molecular Recognition
Manuscript ID	JMR-16-0004.R1
Wiley - Manuscript type:	Review
Date Submitted by the Author:	n/a
Complete List of Authors:	Falconer, Robert; University of Sheffield, Department of Chemical and Biological Engineering
Keywords:	thermodynamics, interactions, drug discovery, enzyme kinetics, thermolysin, allostery, kinITC, ITC

2	
3	
1	
4 E	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
-1-3 E()	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
00	

60

Applications of isothermal titration calorimetry - the research and technical developments from
 2011-15.

3 Robert J. Falconer*

4 Department of Chemical & Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield,

5 S1 3JD, England

6 * To whom the correspondence should be addressed. Telephone +44 114 2228253, Fax +44 114

- 7 2227501 Email <u>r.j.falconer@sheffield.ac.uk</u>
- 8

9

10 ABSTRACT

11 Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or 12 dissociation of molecular complexes. Over the last five years much work has been published on the 13 interpretation of ITC data for single binding and multiple binding sites. As over 80% of ITC papers are 14 on macromolecules of biological origin this interpretation is challenging. Some researchers have 15 attempted to link the thermodynamics constants to events at the molecular level. This review 16 highlights work done using binding sites characterised using x-ray crystallography techniques that 17 allow speculation about individual bond formation and the displacement of individual water 18 molecules during ligand binding and link these events to the thermodynamic constants for binding. 19 The review also considers research conducted with synthetic binding partners where specific binding 20 events like an on- π and π - π interactions were studied. The revival of assays that enable both 21 thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly published 22 criticism of ITC research from a physical chemistry perspective is appraised and practical advice 23 provided for researchers unfamiliar with thermodynamics and its interpretation. 24 25 **INTRODUCTION TO RESEARCH BETWEEN 2011-2015**

26 Research into isothermal titration calorimetry (ITC) started around 25 years ago as high-sensitivity 27 calorimetry instruments were developed. The publication of Ernesto Freire and coworkers' article 28 entitled "Isothermal Titration Calorimetry" in 1990 introduced this technique to researchers interested in studying binding interactions.¹ Since 1990 there has been steady rise in research 29 30 publications on ITC (Figure 1) encouraged by the release of commercial instrumentation that made 31 this method accessible to a wide population of scientists. There are now around 600 to 700 peer-32 reviewed papers containing research using ITC published annually and there are no signs of this 33 growth stopping. The field of protein chemistry has benefited most from ITC dominating the 34 published research though synthetic chemists have increasingly found ITC useful (Figure 2). Research 35 into lipids has used ITC to study demicellation with success and binding studies using nucleic acids, 36 carbohydrates and synthetic molecules are also represented. 37 Despite the steady increase in research using ITC there have been no significant technical advances 38 in ITC instrumentation since 2010. Robotic automated instruments were already on the market in

2010 and ITC can be considered a mature technology. There have been improvements in software making the technology increasingly user friendly. The published ITC research is dominated by simple one-site binding interactions where the mathematics and interpretation of the results are relatively simple. ITC-based techniques like thermal analysis of enzyme kinetics,^{2,3} continuous ITC⁴ and protein folding⁵ have received minimal uptake by the research community despite their apparent value. There have been some recent advances in ITC-based techniques that are worth noting including kinITC which collects kinetic and thermodynamic information for binding interactions,⁶ and advances in ITC displacement assays for high-affinity binding reactions.^{7,8} The increased use of ITC to study binding interactions with synthetic molecules is worthy of note as it provides highly defined molecules for binding studies. Protein binding studies have always been complicated by the fact that many binding sites are not well characterised and the inherent flexibility of protein molecules can make interpretation of binding site studies problematic. Progress has been made on the interpretation of ITC data since 2010. The strengths and weaknesses of ITC are also better understood. This knowledge however, has not uniformly trickled down to researchers undertaking ITC analysis where presentation of ITC data and the interpretation of thermodynamic parameters could be improved. A recent development has been the advent of the Journal of Visualized Experiments (JoVE). JoVE is a PubMed-indexed video journal and ITC methods have been demonstrated by this journal.⁹⁻¹¹ This is particularly useful for researchers unfamiliar with the practical applications of ITC and can form a useful component in student or technician training. Between 2003 and 2012 the Journal of Molecular Recognition published annual reviews of ITC research covering the years 2002 to 2010.¹²⁻²⁰ The authors John Ladbury, Ilian Jelesarov, Brett Collins, Robert Falconer and their co-authors not only reviewed the literature but provided expert advice on ITC use for the scientific community. The purpose of this current review is to appraise the developments from the last five years since the last annual ITC review and provide advice on the interpretation of ITC data. The author identified more than 2,500 articles reporting the use of ITC between January 2011 and December 2015, after searching the Web of Science and Scopus databases. This number of papers is impractical to cite in full so the author has selected approximately 200 that he feels best represents the field and apologises for any resulting omissions. These references have been classified into the following broad categories: (i) References cited in the introduction.¹⁻²⁰ (ii) Review and perspective articles.²¹⁻²⁹ (iii) Methods papers.³⁰⁻⁵² (iv) Protein : protein interactions. 53-70 (v) Protein interactions with other ligands.⁷¹⁻¹⁴³ (vi) Lipids, micelles and membranes.¹⁴⁴⁻¹⁵¹ (vii) Polysaccharides.¹⁵²⁻¹⁵⁵ (viii) Nucleic acids.¹⁵⁶⁻¹⁶⁹ (ix) Synthetic chemicals, polymers and nanoparticles.¹⁷⁰⁻²⁰⁷ (x) Enzyme kinetics.²⁰⁸⁻²¹⁷ (xi) Pre-2011 and non-ITC references.²¹⁸⁻²³⁴

1	
2	
3	
4	
5	
6	
7	
γ Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
41	
42	
43	
14	
15	
40	
46	
47	
48	
49	
50	
51	
52	
52	
23	
54	
55	
56	
57	
58	

59 60

82 INTERPRETATION OF SINGLE BINDING SITE ITC DATA

83 Single binding site interactions are the simplest to study using ITC. If the c-value is between 1 and 84 1000 enough of the sigmoidal titration curve can be captured from which the stoichiometry, 85 disassociation constant (K_D), change in free energy (ΔG) and change in enthalpy (ΔH) can be directly measured. From this the change in entropy (ΔS), can be calculated.²¹⁸ Note c = M_0/K_D where M_0 is 86 87 the initial concentration of the binding partner in the cell. Where the c-value is below 1 the 88 stoichiometry and change in enthalpy (ΔH) values are problematic and where the c-value is greater 89 than 1000 the disassociation constant (K_D) and change in free energy (ΔG) values are inaccurate. It is also worth noting that the change in entropy value (ΔS) is calculated from the equation $\Delta G = \Delta H - T\Delta S$ 90 91 and will contain any errors from both the ΔG and ΔH measurements. An excellent paper by Joel 92 Tellinghuisen written in 2012 provides further guidance for researchers designing ITC protocols to 93 generate precise thermodynamic data.⁴⁸

94 The first hurdle many researchers face is understanding the thermodynamic terms. While the 95 definitions for change in enthalpy and change in free energy definitions are fairly obvious and there are some excellent text books on the subject.²¹⁹⁻²²⁰ The concept of entropy can be difficult to 96 comprehend. Entropy can be described as a measure of disorder within a system as well as the 97 98 energy state of a system.²²¹ For the interpretation of aqueous systems many authors rely on the 99 concept of entropy being the movement from ordered to disordered states (and vice versa) whereas 100 the idea of moving from a high energy state to a lower energy state is probably more accurate and 101 avoids the need to attribute structures to water that are questionable. The water around methyl 102 groups is an example where structural attributes have been used to describe water at the interface. In the past these structures were described as being ice-like²²² and more recently they have been 103 described as clathrate-like cages²²³ or networks.²⁴ A simpler way of describing the water at the 104 interface with a methyl group is water that cannot hydrogen bond with the methyl group; this water 105 106 has a higher energy state than water surrounded by water where it can exchange protons freely. The 107 calculated entropy from ITC data is the sum of the entropies within the sample being studied and 108 will involve the ligand, its target, the water and any co-solutes (buffer, salts, etc.) within the sample. This complexity makes it difficult to ascribe individual changes during binding (like displacement of 109 individual water molecules) to changes in entropy.²⁴ For further reading on the interpretation of 110 111 entropy that is written in a highly accessible manner try Frank Lambert's paper "A modern view of entropy".224 112

113 The work using ITC to study drug candidates' interaction with drug targets has made researchers in 114 this field increasingly aware of the complexity that is occurring at drug binding sites. This has been 115 helped by the known crystal structure of some of the drug targets that were studied.²⁴ This enabled 116 speculation about the specific bond formation occurring and the displacement of specific water 117 molecules during binding.

118 During a binding interaction between a protein and a ligand the following occurs:

The ligand has to penetrate the protein's hydration layer (which may present an energetic barrier)
 There is displacement of water from the part of the protein's and the ligand's surface where the
 binding occurs (desolvation).

> 3. There is also displacement of any co-solutes present at the protein surface. This is particularly important where electrostatic interaction plays a role as charged co-solutes are often present at the binding site and may need displacing. 4. Short-range bond formation (hydrogen bonding, van der Waal's interaction, pi-cation interactions, etc.) between the protein and the ligand will occur. 5. There is the possibility of proton exchange between both binding partners and the buffer. 6. There is the possibility of conformational change of the protein; this is particularly important where allostery plays a role in the protein's function. 7. Finally there will be a rearrangement of the water adjacent to the ligand-protein interface. Each of these events during binding will have an effect on net ΔH and ΔS values. The role of the protein's hydration layer on binding interactions is contentious as the methods for measuring this phenomenon like terahertz spectroscopy are still specialist techniques and not familiar to most ITC users. There is evidence that a protein's hydration layer is more extensive and complex than previously believed.²²⁵⁻²²⁷ It has also been shown that cosolutes can modify the hydration layer.²²⁸⁻²²⁹ There is scope for future work using ITC in conjunction with low frequency analysis of water. Gerhard Klebe's group used inhibitor binding to thermolysin^{24,76-77,108} to study the important contribution of water displacement and rearrangement on the thermodynamics of inhibitor binding. This was not a trivial undertaking. Firstly the structure was defined by x-ray crystallography at the BESSY beamline in Berlin. This enabled the binding site to be well characterised and the possible location of bound water molecules determined. In one study the ligands only differed in the replacement of a methyl with a carboxyl group.⁷⁶ The difference in thermodynamics of binding was attributed to the carboxyl group disrupting the water network around the filled binding site. A second set of ligands were used with substitutions altering the ligands hydrophobicity. As the thermolysin binding site is a hydrophobic pocket, the interaction would usually be considered as an example hydrophobic interaction and would be entropy driven.⁷⁷ Interestingly, the addition of a methyl group to the ligand resulted in an enthalpy-driven improvement in binding whereas addition of further hydrophobicity to the ligand gave a predicted entropy-driven improvement. This was ascribed to changes to the water at the surface of the protein ligand complex.^{77,108} The conclusion from this research was that water played a minor role in the change in free energy but had a major effect on change in enthalpy and entropy. The work did demonstrate our current inability to consistently predict the thermodynamic profiles associated with relatively simple changes in ligand structure even when the binding sitewas well characterised.²⁴ The classical approach to the thermodynamics of binding would be to consider solvation as implicit within the activity coefficients of the binding partners. Brian Castellano and Daryl Eggers argued that for binding reactions in aqueous environments, the water should be treated as a coreactant. So the binding equation was proposed that took water into account, $\Delta G^0 = -RT \ln K_i - [Q]_i \Delta G_i^{H2O}$ where ΔG^0 is the standard free energy constant, $[Q]_i$ is the concentration of the complex, K_i is the association

- 162 constant and ΔG_i^{H2O} is the desolvation energy, all in a specific solution (i).¹⁷⁵ The example used was
- calcium ion binding to EDTA conducted at different reactant concentrations and temperatures.
- 164 When $-RT \ln K_i$ was plotted against $[Q]_i$ the y-intercept gave the ΔG^0 and the slope the ΔG_i^{H2O} values. 165 An observation was that K_i changes with concentration and that the $\Delta G_i^{H2O} / RT$ had a near linear

2		
2	166	relationship to $1/T$. This research provides a method to determine values for the desolvation energy
4	167	associated with binding interactions.
5	168	
6	169	Displacement of co-solutes during binding is often overlooked during ITC studies. An example where
7 8	170	co-solute displacement was studied used metal cation binding to the synthetic p-
9	171	sulfonatocalix[4]arene (a ring structured molecule with four acidic sulpho groups where a metal ion
10	172	can bind) ¹⁸¹ The presence of a counter ion such as sodium had a considerable effect on the
11	173	thermodynamics of hinding. While n-sulfonatocalis[4]arene is a synthetic molecule the principle is
12	17/	the same for proteins and other macromolecules where ions commonly interact with oppositely
13	174	charged constituent parts. Most ITC binding studies are in buffered solutions where the se solutos
15	175	offen comprise active chloride and a huffer that will interact with charged emine acid side chains
16	176	onten comprise sodium chioride and a burier that will interact with charged amino acid side chains
17	1//	and affect the thermodynamics of any binding that involve electrostatic interaction. George
18	1/8	Whiteside's group used the pocket in human carbonic anhydrase II to examine the role of anions on
20	179	binding. ³³ This work which combined TIC with x-ray crystallography and molecular dynamic
21	180	simulation suggested low charge density anions can associate with hydrophobic regions within the
22	181	binding pocket, altering the charge and water structure in and round the pocket.
23	182	
24	183	Proton exchange between either binding partner with the buffer received much attention before
20 26	184	2011. ²⁰ A recent study of ligand binding to a t-RNA binding protein provided a good example of
20	185	proton transfer during ITC experimentation having a marked effect on change in enthalpy. ¹¹⁹
28	186	Further analysis was able to identify which components of the binding partners were responsible for
29	187	the proton exchange with the buffer.
30	188	
31	189	The take home message is that interpretation of ITC data for binding interactions in aqueous
33	190	systems has to take displacement of water, co-solutes and protons into consideration. Commonly
34	191	used solutions like phosphate buffered saline contain the high-charge density phosphate anion
35	192	which binds relatively strongly to positive charged side chains and can interfere with ligand binding
36	193	to proteins (personal observation). Anyone considering selection of low charge density ions like
37 38	194	guanidinium hydrogen chloride or iodine to improve protein solubility would be advised to read
39	195	George Whiteside's paper before proceeding ⁹⁵ Chemicals like DMSO are commonly used to help
40	196	solubilise ligands that have low-solubility in water but the effect of DMSO on the binding partners
41	197	and their respective hydration layers has to be taken into consideration. The choice of the buffer and
42	108	other cosolutes to be used during ITC experiments is very important and needs careful
43 44	100	consideration
45	199	consideration.
46	200	
47	201	INTERPRETATION OF MULTIPLE BINDING SITE ITC DATA
48		
49 50	202	The study of proteins and protein complexes with multiple binding sites is of particular interest to
50 51	203	scientists interested in allosteric regulation where the binding of one molecule to a site affects the
52	204	binding of a second molecule to a separate site on the same protein or protein complex. Where the
53	205	two molecules are different (heterotropic allostery) this phenomenon is easily studied using ITC as
54	206	the ΔG , ΔH and ΔS values for the second binding event will be different for the protein with and
55 56	207	without the first molecule present. An example of heterotropic allostery is the formation of the
วง 57	208	complex between mRNA containing polv(A) sequences with the translation factors polvadenvlate-
58		

60

binding protein-1 (PABP) and scaffolding protein eIF4G.¹³⁰ The ITC data gave clear evidence of
 cooperative binding of eIF4G and Poly(A) to PABP.

Allostery can also occur where the multiple bind sites on the protein or protein complex bind the same ligand (homotropic allostery). An example of this was the binding of acetyl coenzyme A to the dimeric protein aminoglycoside N-(6')-acetyltransferase-Ii.⁹⁶ This study used a combination of ITC, circular dichroism, and nuclear magnetic resonance spectroscopy to quantify the structural, dynamic and thermodynamic aspects of allostery. The ITC binding isotherms are often non-sigmoidal due to the different ΔG and ΔH values of the different binding events. Homotropic allostery presents the challenge of calculating meaningful thermodynamic constants for the multiple binding sites ³¹ and for detecting positive and negative cooperativity.³⁴ While the mathematics for calculating ΔG , ΔH and ΔS values for multiple binding sites has been determined and informative simulations have been undertaken^{31,34} it is worth remembering that relatively small errors in the raw ITC data (especially where few titrations are present for critical parts of the thermogram) can generate plausible but misleading ΔG , ΔH and ΔS values for the binding sites.

Non-specific binding can be easily confused with multiple binding site interactions. There are many molecules that will bind to proteins, nucleic acids and synthetic molecules, while not targeting individual binding sites. Possibly the best studied family of molecules that bind "promiscuously" to proteins are the polyphenolics.^{79,107,117,143} It is believed that polyphenolics hydrogen bond with the peptide backbone of a protein. The complicating factor in studying non-specific binding of polyphenolics to proteins is their propensity to cross-link proteins which can displace water around the proteins and contribute to the recorded ΔG and ΔH values (personal observation). The ITC binding isotherms are often non-sigmoidal and could be interpreted as evidence of allostery if crosslinking was not taken into consideration.¹⁰⁷

233 METHODOGICAL ADVANCES

kinITC assay to capture both thermodynamic and kinetic information. Burnouf et al 2012 proposed a method for collecting both kinetic and thermodynamic data from ITC experimentation that could be used for simple binding interactions and more complex processes.⁶ The example they studied included the binding of the inhibitor Nevirapine to HIV-1 reverse transcriptase, and the binding of thiamine pyrophosphate (TPP) to the *Escherichia coli* riboswitch present in the 5'-UTR of the thiC mRNA which folded on binding of TPP. The paper's supplementary information provided details on instrument response time, injection times and mixing times for their Microcal ITC200 which had to be taken into account if this method was to be reliable. Work on the partial validation of kinITC used surface plasmon resonance as the gold standard method for determining the kinetic on and off constants. The collection of kinetic data using an ITC is obviously attractive as it does not require a tether to a solid support but the assay must be well validated and the instrument response time, injection times and mixing times for the instrument known.

The collection of both kinetic and thermodynamic data has also been applied to study RNA helical
 packing.¹⁶⁶ By running the assay at different temperatures they were able to calculate the Arrhenius
 activation energy and Eyring transition state entropy as well as the thermodynamic parameters for
 GAAA tetraloop–receptor interaction in magnesium and potassium solutions.

Page 7 of 27

ITC assays for the guantification of high-affinity binding interactions. The standard ITC displacement assay used to study high-affinity interactions has been around since 2000 and has been used to study a range of high-affinity interactions.^{230,231} This technique uses the displacement of a moderate-affinity ligand to lower the apparent affinity of a high-affinity ligand. A displacement assay using weakly binding fragments to thrombin was run in parallel with direct (low-C) assay and showed both methods yielded valid disassociation constants.⁴⁴ The direct low-C titrations, however, have highly questionable stoichiometry. The displacement assay also had a drawback that different displaced ligands affected the enthalpic values indicating that the choice of the displaced ligand was important and that experimental conditions need to be standardised so comparison can be made between different fragments. This phenomenon was ascribed to the solvation structure and protein dynamics of the initial protein–ligand complexes before displacement occured.⁴⁴ The displacement method has a serious drawback as the high-affinity ligand of interest has to be soluble at high concentrations (>100 µM). Many high-affinity drugs have low solubility in water making the traditional displacement assay impractical. The competition assay published in Krainer et al 2012 can be used to study low solubility high affinity ligands.⁷ In this assay the receptor was titrated into a mixture of competing high- and moderate-affinity ligands which generated a biphasic isotherm that was be used to quantify disassociation constants (K_{o}) and binding enthalpies (ΔH) for both ligands. Another alternative approach was a single-experiment displacement assay.⁸ The assay involved the titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor with excess moderate-affinity ligand. The isotherm was also biphasic and was used to quantify K_{ρ} and ΔH values for both high-affinity and medium-affinity ligands competing for the same binding site. This provides three different strategies for analysing problematic high-affinity binding interactions.

Software. Researchers using ITC are recommended to appraise the software NITPIC (which claims to
 be superior to Origin) and SEDPHAT that have been developed to assist in analysis of ITC data.^{39,45,52}
 The program NITPIC can be downloaded for free from

276 <u>http://biophysics.swmed.edu/MBR/software.html</u>. SEDPHAT can be downloaded from

277 <u>http://sedfitsedphat.nibib.nih.gov/software</u> free of charge. AFFINImeter produce commercial

278 software that can be used for analysis of displacement assays, micellization experiments, kinITC, the

- application of complex models for complex interactions, and ligand induced conformational change.
- 280 At the time of writing this software was only suitable for MicroCal data but they were intending to
- 281 release the software compatible with other brands of ITC.

283 SYNTHETIC MOLECULES

Over 80% of research using ITC is with macromolecules of biological importance including proteins,
nucleic acids, lipids and carbohydrates. Macromolecules are poorly suited to studying specific
interactions. The use of ITC with synthetic molecules provides a range of opportunities to study
binding interactions using receptors that are simpler and well defined. This has enabled hypotheses
regarding interactions in aqueous solutions to be tested using well defined synthetic ligands. This
information can then be transferred to help our understanding of the interactions that are occurring
in proteins, nucleic acids, etc.

There are several papers studying cation- π ; anion- π ; and π - π interactions. In one study ciprofloxacin hydrochloride was used in an aqueous solution.¹⁹⁷ Ciprofloxacin hydrochloride has a quinolone ring and a protonated amine. ITC was used alongside H^1 NMR spectroscopy to demonstrate one-dimensional aggregates formed by π - π stacking and dimer formation brought together by cation- π interaction. Anion- π were studied in aqueous solutions with a tren (tris(2-aminoethyl)amine) molecule attached to a nitroso-amino-pyrimidine.¹⁷³ A range of anions were shown to interact with the heteroaromatic ring. A large entropic contribution favoured association and was attributed to displacement of water around the hydrophobic pyrimidine surface during association suggesting in this case water displacement played an important contribution to this anion- π interaction. Anion- π interactions were also studied using halides (CI-, Br-, and I-) and "two-wall" calix[4]pyrrole receptors with two six-membered aromatic rings in organic solvents.¹⁷⁰ The number and electron drawing character of aromatic substitutions increased the positive electrostatic surface potential of the centre of the six member ring enabling the anion- π interaction. The interaction of fullerenes to a buckycatcher (comprised of two corannulene subunits tethered together) in a range of organic solvents is an example of binding with a strong π - π interaction component.¹⁸⁹ In a binding interaction where solvent displacement played a significant role, the change in entropy played a minor role in driving binding which surprised the authors.

A synthetic octa-acid host with a hydrophobic pocket was used to study the effect of anions on binding of small molecule ligands.¹⁸² In the case of low charge density anions like ClO_3 the anion was found to enhance affinity at low concentrations and weaken it at high concentrations. At higher ClO₃⁻ concentrations, for the small molecule ligand to bind to the hydrophobic pocket required displacement of the anion. This supports the theory of Kim Collins that explains the behaviour of low charge density anions and protein solubility in terms of low charge density anion interaction with hydrophobic surfaces on the protein.²³² While the synthetic octa-acid host study is ongoing it does provide the opportunity to challenge or confirm the theories for low charge density anion interaction with hydrophobic pockets at a nanometer-scale and complements work undertaken with binding to proteins in the presence of low charge density anions that observe similar effects.⁹⁵ It also has the capacity to challenge theories about the activity of medium and high charge density anion indirect interaction through competition for solvent.²³³

In an interesting study, allostery was mimicked using a dual-cavity basket which had six alanine
 residues at the entrance of two juxtaposed cavities that was designed to trap organophosphorus
 nerve agents.¹⁷⁷ Molecular dynamic simulation and H¹ NMR spectroscopy suggested a negative
 homotropic cooperativity of binding in water. This is an attractive candidate for ITC studies as it
 could be used to validate computer simulations of negative cooperativity binding.

326 CAUTIONARY NOTE

In 2015, Brian Pethica from Princeton University wrote a highly critical paper entitled "Misuse of
 thermodynamics in the interpretation of isothermal titration calorimetry data for ligand binding to
 proteins" ²⁶ which should serve as a cautionary note for scientists who don't have a strong
 background in thermodynamics. Pethica's critique, however, should not dissuade researchers from
 using ITC to study binding as long as they are aware of the assumptions that predicate the
 calculation of the thermodynamic constants.

Journal of Molecular Recognition

2	
2	
3	
4	
5	
6	
7	
8	
å	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
20	
26	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
46	
47	
18	
40	
49	
50	
51	
52	
53	
54	
54	
55	
56	
57	
58	
50	

333 The first key assumption behind the equation $\Delta G = \Delta H - T\Delta S$ (where ΔH is the change in enthalpy, ΔG is 334 the change in free energy and ΔS is the change in entropy) is that the binding reaction is reversible 335 and that equilibrium has been reached. This assumption is acceptable for most binding reactions but 336 it should be remembered that allosteric change in a binding partner could prevent the ligand 337 returning to the solution. The most common error in published ITC data was too shorter time 338 between titrations which does not allow the peak to return to the baseline (i.e. equilibrium was not 339 reached before the next injection) and this key assumption was not met. 340 The second assumption is that the ligand and the macromolecule (protein, nucleic acid or synthetic

molecule) are totally soluble. In practice many ligands such as drug candidates have low solubility in water. In some cases ligand preparations may include insoluble along with the soluble ligand. When injected into the ITC cell some of the insoluble material will dissolve and there will be a ΔH associated with this event. The use of control titrations of ligand into buffer (without the macromolecule present) and titrations of buffer (without the ligand) into the macromolecule can be used to detect this type of event occurring. The use of these controls should be a normal part of ITC experimental design.

348 The third assumption is that macromolecule solutions are ideal (i.e. there are no macromolecule-349 macromolecule interactions, no macromolecule-cosolute interactions, and no interactions between 350 macromolecule-ligand complexes). Macromolecule solutions are not ideal. Cosolutes interact with macromolecules both by direct binding and indirectly by modifying their hydration layers. 233-235 351 352 Macromolecules similarly interact with each other or compete with each other for water for their hvdration layers. ^{226,229} The issue of cosolutes altering the thermodynamics of ligand binding is 353 354 unavoidable and the researcher has to accept that the thermodynamic constants derived from their 355 research are for the solution conditions used and will change if different buffer, pH or temperatures 356 are used. The issue of macromolecule-macromolecule interactions is also unavoidable. Even a target 357 like EDTA demonstrated concentration-dependant thermodynamics of binding to calcium ions.¹⁷⁴ 358 This was attributed to the desolvation of the binding partners and demonstrated that undertaking 359 ITC at several target concentrations will provide a better understanding of the non-ideality of 360 macromolecule solutions.

361 To overcome the criticism from physical chemists like Brian Pethica, the author recommends that 362 researchers should do the following:

• Outline the assumptions behind the thermodynamic calculations in their papers.

• Make sure titration peaks do reach the baseline (achieving equilibrium).

Run the control titrations of ligand into buffer (without the macromolecule present) and
 buffer (without the ligand) into the macromolecule as a standard part of the ITC
 experimentation then present these thermograms in the paper or as supplementary
 information.

Specify the conditions used for the binding experiments including the composition of both
 titrant solution and the solution in the sample cell (include pH and temperature). Also include
 the specific titration strategy used. While this does not avoid non-ideality of macromolecule
 solutions it does define the experimentally derived thermodynamic constants for the precise
 conditions used.

60

For experimentation with low solubility ligands, be careful that the ligand is totally dissolved • and if chemicals like DMSO are used to improve ligand solubility, consider their potential interaction with the binding partners. **REQUEST FOR RAW DATA PUBLICATION** The author would like to suggest that editors and reviewers of articles containing ITC data should request that the raw ITC data (the experimentally derived thermograms) should be published in the paper or as supplementary material. There are many ITC papers where the calculated binding isotherms alone are published without the experimentally derived thermograms. To the experienced ITC operator the raw data contains a wealth of information and should be provided to verify that the analysis was done to a high standard. The raw data can confirm that the baseline was steady and equilibrium was reached before the next injection. The raw data can also be used to better understand the kinetics of the interaction and detect mixed interactions (e.g. rapid binding followed by slow aggregation). It is the author's opinion that much useful data is being lost and that confidence in published data is eroded due to the frequent failure to publish raw ITC data. **Figure Titles** Figure 1 Articles written with isothermal titration calorimetry content since 1990 sourced from the Web of Science [™]. Figure 2 Subject material studied using isothermal titration calorimetry in 2014. Note protein related research accounted for 67% of the articles. Synthetic compounds were 17%, lipids and micelles were 6%, nucleic acids were 4%, carbohydrates were 3% and the remainder were 3% of the articles.

2			
3	397	(i) Re	eferences cited in the introduction
4 5	398	1.	Freire E. Mayorga OL. Straume M. 1990. Isothermal titration calorimetry. Anal. Chem. 62:
6	399		950A-959A.
7	400	2.	Todd MJ, Gomez J. 2001. Enzyme kinetics determined using calorimetry: a general assay for
8	401		enzyme activity? Anal. Biochem. 296 : 179–87.
10	402	3.	Olsen SN, 2006, Applications of isothermal titration calorimetry to measure enzyme kinetics
11	403	•	and activity in complex solutions. <i>Thermochimica Acta</i> 448 : 12-18.
12	404	4.	Markova N. Hallén D. 2004. The development of a continuous isothermal titration calorimetric
13	405		method for equilibrium studies Anal Biochem 331 .77-88
14	406	5	Lonez MM Chin DH Baldwin RI. Makhatadze GI 2002 The enthalpy of the alanine pentide
16	407	5.	helix measured by isothermal titration calorimetry using metal-hinding to induce helix
17	408		formation Proc Natl Acad Sci USA 99: 1298–1302
18	100	6	Burnouf D. Eppifar F. Guedich S. Puffer B. Hoffmann G. Bec G. Disdier F. Baltzinger M. Dumas
19 20	405	0.	P 2012 kinITC: A new method for obtaining joint thermodynamic and kinetic data by
20	410		isothermal titration calorimetry <i>I Am. Chem. Soc.</i> 134 : 559-565
22	411	7	Krainer G. Broecker I. Vargas C. Eanghänel I. Keller S. 2012. Quantifying high affinity hinding of
23	412	7.	hydronhohis ligands by isothermal titration calorimetry. Angl. Cham. 94 : 10715–10722
24	415	0	Hydrophobic ligands by Isothermal titration calorimetry. <i>Andr. Chem.</i> 84 , 10713-10722.
25 26	414	ð.	krainer G, Keiler S. 2015. Single-experiment displacement assay for quantifying high-annity
27	415	0	binding by isothermal titration calorimetry. <i>Methods</i> 76 : 116-123.
28	416	9.	Duff MR, Grubbs J, Howell EE. 2011. Isothermal titration calorimetry for measuring
29	417	4.0	macromolecule-ligand affinity. J. VIS. Exp. 55: UNSP e2796.
30	418	10.	Freiburger LA, Mittermaier AK, Auclair K. 2011. Collecting variable-concentration isothermal
32	419		titration calorimetry datasets in order to determine binding mechanisms. J. Vis. Exp. 50: UNSP
33	420		e2529.
34	421	11.	Mazzei L, Ciurli S, Zambelli B. 2014. Hot biological catalysis: Isothermal titration calorimetry to
35	422		characterize enzymatic reactions. J. Vis. Exp. 86: e51487.
36	423	12.	Cliff MJ, Ladbury JE. 2003. A survey of the year 2002 literature on applications of isothermal
38	424		titration calorimetry. <i>J. Mol. Recognit</i> . 16 : 383–91.
39	425	13.	Cliff MJ, Gutierrez A, Ladbury JE. 2004. A survey of the year 2003 literature on applications of
40	426		isothermal titration calorimetry. J. Mol. Recognit. 17 : 513–23.
41 42	427	14.	Ababou A, Ladbury JE. 2006. Survey of the year 2004: literature on applications of isothermal
42 43	428		titration calorimetry. J. Mol. Recognit. 19 : 79–89.
44	429	15.	Ababou A, Ladbury JE. 2007. Survey of the year 2005: literature on applications of isothermal
45	430		titration calorimetry. J. Mol. Recognit. 20: 4–14.
46	431	16.	Okhrimenko O, Jelesarov I. 2008. A survey of the year 2006 literature on applications of
47 48	432		isothermal titration calorimetry. J. Mol. Recognit. 21: 1–19.
40 49	433	17.	Bjelic S, Jelesarov I. 2008. A survey of the year 2007 literature on applications of isothermal
50	434		titration calorimetry. J. Mol. Recognit. 21: 289–312.
51	435	18.	Falconer RJ, Penkova A, Jelesarov I, Collins BM. 2010. Survey of the year 2008: applications of
52 52	436		isothermal titration calorimetry. J. Mol. Recognit. 23: 395–413.
53 54	437	19.	Falconer RJ, Collins BM. 2011. Survey of the year 2009: applications of isothermal titration
55	438		calorimetry. J. Mol. Recognit. 24: 1–16.
56	439	20.	Ghai R, Falconer RJ, Collins BM. 2012. Applications of isothermal titration calorimetry in pure
57	440		and applied research—survey of the literature from 2010. J. Mol. Recognit. 25: 32-52.
58 59			
60		11	

3	441		
4	440	(::) D	and a successful and interactions
5 6	442	(II) K	eviews and perspective articles
7	443	21.	Eggers DK, Le JM, Pham DN, Nham NT, Contreras FA. 2015. Desolvation energy: A rationale for
8	444		changes in binding affinity as measured by ITC. <i>Biophys. J.</i> 108: 114A-114A.
9	445	22.	Ferenczy GG, Keseru GM. 2012. Thermodynamics of fragment binding. J. Chem. Inf. Model. 52:
10	446		1039-1045.
12	447	23.	Garbett NC, Chaires JB. 2012. Thermodynamic studies for drug design and screening. Expert
13	448		Opin. Drug Disc. 7: 299-314.
14 15	449	24.	Klebe G. 2015. Applying thermodynamic profiling in lead finding and optimization. Nat. Rev.
16	450		Drug Disc. 14: 95-110.
17	451	25.	Martin SF, Clements JH. 2013. Correlating structure and energetics in protein-ligand
18	452		Interactions: Paradigms and paradoxes. Annu. Rev. Biochem. 82:267-293.
19 20	453	26.	Pethica BA. 2015. Misuse of thermodynamics in the interpretation of isothermal titration
21	454		calorimetry data for ligand binding to proteins. Anal. Biochem. 472: 21-29.
22	455	27.	Rajarathnam K, Roesgen J. 2014. Isothermal titration calorimetry of membrane proteins -
23	456		Progress and challenges. BBA-Rev. Biomembranes 1838: 69-77.
24	457	28.	Scott DE, Ehebauer MT, Pukala T, Marsh M, Blundell TL, Venkitaraman AR, Abell C, Hyvoenen
26	458		M. 2013. Using a fragment-based approach to target protein-protein interactions.
27	459		Chembiochem 14 : 332-342.
28	460	29.	Willerich I, Groehn F. 2011. Molecular Structure Encodes Nanoscale Assemblies:
29	461		Understanding driving forces in electrostatic self-assembly. J. Am. Chem. Soc. 133: 20341-
31	462		20356.
32			
33	463	(iii) M	Methods papers
34	464	30	Boudker O. Oh S. 2015. Isothermal titration calorimetry of ion-coupled membrane
36	465	50.	transporters Methods 76: 171-182
37	466	31	Brautigam CA 2015 Fitting two- and three-site binding models to isothermal titration
38	467	51.	calorimetry data <i>Methods</i> 76 : 124-136
39	468	32	Chiannisi L Li D. Wagner NJ. Gradzielski M. 2014. An improved method for analyzing
40 41	469	52.	isothermal titration calorimetry data from oppositely charged surfactant polyelectrolyte
42	470		mixtures / Chem Thermodyn 68: 48-52
43	470	22	Dias DM, Van Molle I, Baud MGL Galdeano C, Geraldes CEGC, Ciulli A, 2014, Is NMR fragment
44	472	55.	screening fine-tuned to assess druggability of protein-protein interactions? ACS Med. Chem
45 46	472		lett 5: 23-28
47	475	34	Freiburger L. Auclair K. Mittermaier A. 2015. Global ITC fitting methods in studies of protein
48	474	54.	allostery Methods 76: 140-161
49	475	25	Grupper S. Noch M. Barandun I.I. Sielaff E. Hehn C. Keijma S. Steinmetzer T. Diederich E. Klebe
50 51	470	55.	G 2014 Impact of protoin and ligand impurities on ITC derived protoin ligand
52	477		d. 2014. Impact of protein and ingand impunctes on the derived protein-ligand
53	478	20	thermodynamics. <i>Biochim. Biophys. Acta</i> 1840 : 2843-2850.
54	479	36.	nansen Lu, Feilingham Gw, Kussell DJ. 2011. Simultaneous determination of equilibrium
55	480		constants and enthalpy changes by titration calorimetry: Methods, instruments, and
56 57	481		uncertainties. Anal. Biochem. 409: 220-229.
58			
59			

2			
3	482	37.	Henzl MT, Markus LA, Davis ME, McMillan AT. 2013. Simultaneous addition of two ligands: A
4	483		potential strategy for estimating divalent ion affinities in EF-hand proteins by isothermal
5	484		titration calorimetry. <i>Methods</i> 59: 336-348.
6 7	485	38.	Herrera I. Winnik MA. 2013. Differential binding models for isothermal titration calorimetry:
8	486		Moving beyond the Wiseman isotherm. J. Phys. Chem. B 117 : 8659-8672.
9	487	39	Keller S. Vargas C. Zhao H. Piszczek G. Brautigam. Schuck P. 2012. High-precision isothermal
10	488	55.	titration calorimetry with automated neak-shane analysis Anal Chem 84 : 5066-5073
11	180	40	Krimmer SG Klebe G 2015 Thermodynamics of protein-ligand interactions as a reference for
12	405	40.	computational analysis: how to assocs accuracy, reliability and relevance of experimental data
13	490		Computational analysis. now to assess accuracy, reliability and relevance of experimental data.
15	491	• •	J. Comput. Aldea Mol. Des. 29: 867-883.
16	492	41.	Le VH, Buscaglia R, Chaires JB, Lewis EA. 2013. Modeling complex equilibria in isothermal
17	493		titration calorimetry experiments: Thermodynamic parameters estimation for a three-binding-
18	494		site model. Anal. Biochem. 434: 233-241.
19	495	42.	Mashalidis EH, Sledz P, Lang S, Abell C. 2013. A three-stage biophysical screening cascade for
20	496		fragment-based drug discovery. Nat. Protocols 8: 2309-2324.
21	497	43.	Rocklin GJ, Boyce SE, Fischer M, Fish I, Mobley DL, Shoichet BK, Dill KA. 2013. Blind prediction
23	498		of charged ligand binding affinities in a model binding site. J. Mol. Biol. 425: 4569-4583.
24	499	44.	Ruehmann E, Betz M, Fricke M, Heine A, Schafer M, Klebe G.2015. Thermodynamic signatures
25	500		of fragment binding: Validation of direct versus displacement ITC titrations. <i>Biochim. Biophys.</i>
26	501		Acta 1850 : 647-656.
21	502	45	Scheuermann TH, Braitigam CA, 2015, High-precision, automated integration of multiple
20 29	503	131	isothermal titration calorimetric thermograms: New features of NITPIC Methods 76: 87-98
30	505	16	Societa C. Zito V. Arona C. 2012. Conditions for calibration of an icothermal titration
31	504	40.	spanata C, 210 V, Alena G. 2013. Conditions for calibration of an isothermal itration
32	505	47	calorimeter using chemical reactions. <i>Anal. Bioanal. Chem.</i> 405 : 1085-1094.
33	506	47.	Tellingnuisen J, Chodera JD. 2011. Systematic errors in isothermal titration calorimetry:
34 35	507		Concentrations and baselines. Anal. Biochem. 414: 297-299.
36	508	48.	Tellinghuisen J. 2012. Designing isothermal titration calorimetry experiments for the study of
37	509		1:1 binding: Problems with the "standard protocol". <i>Anal. Biochem</i> . 424 : 211-220.
38	510	49.	Transtrum MK, Hansen LD, Quinn C. 2015. Enzyme kinetics determined by single-injection
39	511		isothermal titration calorimetry. <i>Methods</i> 76: 194-200.
40	512	50.	Vega S, Abian O, Velazquez-Campoy A. A unified framework based on the binding polynomial
41	513		for characterizing biological systems by isothermal titration calorimetry. <i>Methods</i> 76 : 99-115.
43	514	51.	Velazquez-Campoy A. 2015. Geometric features of the Wiseman isotherm in isothermal
44	515		titration calorimetry. J. Therm. Anal. Calorim. 122: 1477-1483.
45	516	52.	Zhao H, Piszczek G, Schuck P. 2015. SEDPHAT – A platform for global ITC analysis and global
46	517		multi-method analysis of molecular interactions. <i>Methods</i> 76 : 137-148.
47 48	518		
40 49	519	(iv) I	Protein : protein interactions
50	515	(, .	
51	520	53.	Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Henzler-Wildman KA, Tolia NH. 2014.
52	521		Red blood cell invasion by Plasmodium vivax: Structural basis for DBP engagement of DARC.
53	522		<i>Plos Pathog.</i> 10 : e1003869.
04 55	523	54.	Bulatov E, Martin EM, Chatteriee S, Knebel A, Shimamura S. Koniinenberg A. Johnson C. Zinn
56	524		N. Grandi P. Sobott F. Ciulli A. 2015. Biophysical studies on interactions and assembly of full-
57			
58			
59			
60		13	

3	525		size E3 ubiquitin ligase suppressor of cytokine signalling 2 (SOCS2)-elongin BC-cullin 5-ring box
4	526		protein 2 (RBX2). <i>J. Biol. Chem.</i> 290 : 4178-4191.
5	527	55.	Chabot PR. Raiola L. Lussier-Price M. Morse T. Arseneault G. Archambault J. Omichinski JG.
6	528		2014 Structural and Eunctional Characterization of a Complex between the Acidic
/ 8	529		Transactivation Domain of ERNA2 and the Tfh1/n62 Subunit of TEILH Plas Pathoa 10 :
9	525		
10	550	50	E1004042.
11	531	56.	Eraies J, Beitrandi M, Roche J, Mate M, Longhi S. 2015. Insights into the Hendra Virus N-TAIL-
12	532		XD complex: Evidence for a parallel organization of the helical MoRE at the XD surface
13	533		stabilized by a combination of hydrophobic and polar interactions. BBA-Proteins
14 15	534		Proteom. 1854 : 1038-1053.
10	535	57.	Francis DM, Rozycki B, Koveal D, Hummer G, Page R, Peti W. 2011. Structural basis of p38
17	536		alpha regulation by hematopoietic tyrosine phosphatase. Nat. Chem. Biol. 7: 916-924.
18	537	58.	Haslbeck V, Eckl JM, Kaiser CJO, Papsdorf K, Hessling M, Richter K. 2013. Chaperone-
19	538		Interacting TPR Proteins in Caenorhabditis elegans. J. Mol. Biol. 425: 2922-2939.
20	539	59.	Ikenoue T. Lee Y-H. Kardos J. Yagi H. Ikegami T. Naiki H. Goto Y. 2014. Heat of supersaturation-
21	540		limited amyloid burst directly monitored by isothermal titration calorimetry. Proc. Natl. Acad
22	540		Sci. USA 111: 6654-6659
23 24	541	<u> </u>	Sch. USA III. 0034-0039.
25	542	60.	KOZIN SA, KUIIKOVA AA, ISLITALE AN, ISVELKOV PO, ZNOKNOV SS, IVIEZENISEV YV, KECHKO OI, IVANOV
26	543		AS, POISNakov VI, Makarov AA. 2015. The English (H6R) familial Alzheimer's disease mutation
27	544		facilitates zinc-induced dimerization of the amyloid-beta metal-binding domain. <i>Metallomics</i>
28	545		7: 422-425.
29	546	61.	Kulikova AA, Tsvetkov PO, Indeykina MI, Popov IA, Zhokhov SS, Golovin AV, Polshakov VI,
30	547		Kozin SA, Nudler E, Makarov AA. 2014. Phosphorylation of Ser8 promotes zinc-induced
32	548		dimerization of the amyloid-beta metal-binding domain. <i>Mol. Biosyst</i> . 10 : 2590-2596.
33	549	62.	Matsunaga R, Abe R, Ishii D, Watanabe S-i, Kiyoshi M, Noecker B, Tsuchiya M, Tsumoto K.
34	550		2013. Bidirectional binding property of high glycine-tyrosine keratin-associated protein
35	551		contributes to the mechanical strength and shape of hair. J. Struct. Biol. 183 : 484-494.
36	552	63	Muratcioglu S. Chavan TS. Freed BC. Jang H. Khavrutskii J. Freed RN. Dyba MA. Stefanisko K
37	552	00.	Tarasov SG, Gursov A, Keskin O, Tarasova NJ, Ganonenko V, Nussinov B, 2015, GTP-dependent
30	555		K Dec dimerization Structure 22 : 1225-1225
40	554	C A	N-ras dimenzation. Structure 25. 1525-1555.
41	555	64.	Norwood SJ, Shaw DJ, Cowleson NP, Owen DJ, Teasdale RD, Collins BM. 2011. Assembly and
42	556		solution structure of the core retromer protein complex. <i>Traffic</i> 12: 56-71.
43	557	65.	Reille-Seroussi M, Gaucher J-F, Desole C, Gagey-Eilstein N, Brachet F, Broutin I, Vidal M,
44	558		Broussy S. 2015. Vascular endothelial growth factor peptide ligands explored by competition
45	559		sssay and isothermal titration calorimetry. <i>Biochemistry</i> 54: 5147-5156.
40 47	560	66.	Winstone TML, Tran VA, Turner RJ. 2013. The hydrophobic region of the DmsA twin-arginine
48	561		leader peptide determines specificity with chaperone DmsD. <i>Biochemistry</i> 52: 7532-7541.
49	562	67.	Winzen S, Schoettler S, Baier G, Rosenauer C, Mailaender V, Landfester K, Mohr K. 2015.
50	563		Complementary analysis of the hard and soft protein corona: sample preparation critically
51	564		effects corona composition. <i>Nanoscale</i> 7 : 2992-3001.
52 52	565	68	Wrench AP, Gardner CL, Siegel SD, Pagliai FA, Malekiha M, Gonzalez CF, Lorca GL, 2013
53 54	566	00.	Mgla/Ssna complex interactions are modulated by inorganic polyphosphate. <i>Plos One</i> 9 :
55	567		a76429
56	507	<u> </u>	C/U420.
57	568	69.	xu J, Brewer KD, Perez-Castillejos K, Kizo J. 2013. Subtle interplay between synaptotagmin and
58	569		complexin binding to the SNARE complex. <i>J. Mol. Biol.</i> 425 : 3461-3475.
59			

2			
3	570	70.	Xu Y, Oruganti V, Gopalan V, Foster MP. 2012. Thermodynamics of coupled folding in the
4 5	571		interaction of archaeal RNase P proteins RPP21 and RPP29. <i>Biochemistry</i> 51 : 926-935.
6	572	(v) Pr	otein interactions with other ligands (including metals, nucleic acids, nanoparticles, co-
7	573	facto	rs and drugs).
o Q			
10	574	71.	Anglin JL, Deng L, Yao Y, Cai G, Liu Z, Jiang H, Cheng G, Chen P, Dong S, Song Y. 2012. Synthesis
11	575		and structure-activity relationship investigation of adenosine-containing inhibitors of histone
12	576		methyltransferase DOT1L. J. Med. Chem. 55: 8066-8074.
13	577	72.	Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PHH, Mailaender V, Musyanovych A,
14 15	578		Landfester K. 2011. BSA adsorption on differently charged polystyrene nanoparticles using
16	579		isothermal titration calorimetry and the influence on cellular uptake. <i>Macromol. Biosci.</i> 11:
17	580		628-638.
18	581	73.	Bec G, Meyer B, Gerard M-M, Steger J, Fauster K, Wolff P, Burnouf D, Micura R, Dumas P,
19	582		Ennifar E. 2013. Thermodynamics of HIV-1 reverse transcriptase in action elucidates the
20	583		mechanism of action of non-nucleoside inhibitors. J. Am. Chem. Soc. 135: 9743-9752.
22	584	74.	Becker AL, Welsch N, Schneider C, Ballauff M, 2011, Adsorption of RNase A on cationic
23	585		polyelectrolyte brushes: A study by isothermal titration calorimetry. <i>Biomacromolecules</i> 12 :
24	586		3936-3944
25	587	75	Biedermann F. Hzunova VD. Scherman OA. Nau WM. De Simone A. 2012. Release of high-
26	500	75.	operative water as an essential driving force for the high affinity hinding of cucurbit[n]urils.
28	200		Am Cham Case 124 : 15219 15222
29	589	70	Am. Chem. Soc. 134 : 15318-15323.
30	590	76.	Biela A, Betz M, Heine A, Kiebe G. 2012. Water makes the difference: rearrangement of water
31	591		solvation layer triggers non-additivity of functional group contributions in protein-ligand
32	592		binding. <i>ChemMedChem</i> . 7 : 1423–1434.
33 34	593	77.	Biela A, Nasief NN, Betz M, Heine A, Hangauer D, Klebe G. 2013. Dissecting the hydrophobic
35	594		effect on the molecular level: The role of water, enthalpy, and entropy in ligand binding to
36	595		thermolysin. Angew. Chem. Int. Ed. 52: 1-8.
37	596	78.	Biela A, Sielaff F, Terwesten F, Heine A, Steinmetzer T, Klebe G. 2012. Ligand binding stepwise
38	597		disrupts water network in thrombin: Enthalpic and entropic changes reveal classical
39 40	598		hydrophobic effect. J. Med. Chem. 55: 6094-6110.
41	599	79.	Bohin MC, Vincken J-P, van der Hijden HTWM, Gruppen H. 2012. Efficacy of food proteins as
42	600		carriers for flavonoids. J. Agric. Food Chem. 60: 4136-4143.
43	601	80.	Borisova AS, Isaksen T, Dimarogona M, Kognole AA, Mathiesen G, Varnai A, Rohr AK, Payne
44	602		CM, Sorlie M, Sandgren M, Eijsink VGH. 2015. Structural and functional characterization of a
45 46	603		lytic polysaccharide monooxygenase with broad substrate specificity. J. Biol. Chem. 290:
40	604		22955-22969.
48	605	81.	Breukels V. Koniinenberg A. Nabuurs SM. Touw WG. Vuister GW. 2011. The second Ca2+-
49	606		binding domain of NCX1 binds Mg2+ with high affinity. <i>Biochemistry</i> 50 : 8804-8812.
50	607	82	Cankauskaite F. Zubriene A. Smirnov A. Torresan I. Kisonaite M. Kazokaite I. Gylyte I.
51	608	02.	Michailoviene V. Jogaite V. Manakova F. Grazulis S. Tumevicius S. Matulis D. 2013
52 53	600		Ponzonosulfonamidos with pyrimiding mojety as inhibitors of human carbonic aphydrasos L II
54	610		VI VII VII and VIII <i>Pipergan Mod Cham</i> 21 : 6027-6047
55	010	02	vi, vii, Ali, dilu Alii. Divulyuli. Ivieu. Clielli. 21. 0937-0947.
56	011	ŏ <u></u> .	Cectorii S, Faure S, Darbost O, Bornamour I, Parrot-Lopez H, Roy O, Tallietumier C,
57 59	612		wimmerova ivi, Praly J-P, Imperty A, Vidal S. 2011. Selectivity among two lectins: Probing the
50 59			

3	613		effect of topology, multivalency and flexibility of "clicked" multivalent glycoclusters. Chem.
4	614		<i>Eur. J.</i> 17 : 2146-2159.
5	615	84.	Cecioni S, Praly J-P, Matthews SE, Wimmerova M, Imberty A, Vidal S. 2012. Rational design
0 7	616		and synthesis of optimized glycoclusters for multivalent lectin-carbohydrate interactions:
8	617		influence of the linker arm. <i>Chem. Eur. J.</i> 18 : 6250-6263.
9	618	85	Chabre YM Giguere D Blanchard B Rodrigue L Rocheleau S Neault M Rauthu S
10	610	05.	Panadonoulos A Arnold AA Imborty A Poy P 2011 Combining glycomimatic and multivalent
11	620		stratogies toward designing notant bactorial lectin inhibitors. Cham. Eur. 1. 17: 6545-6562
12	020	00	Strategies toward designing potent bacterian lectin minibitors. <i>Chem. Edit.</i> 5 , 17 , 0343-0302.
13	621	86.	Chakraborti S, Joshi P, Chakravarty D, Shanker V, Ansari ZA, Singh SP, Chakrabarti P. 2012.
14	622		Interaction of polyethyleneimine-functionalized ZnO nanoparticles with bovine serum
16	623		albumin. <i>Langmuir</i> 28 : 11142-11152.
17	624	87.	Chakraborty S, Joshi P, Shanker V, Ansari ZA, Singh SP, Chakrabarti P. 2011. Contrasting effect
18	625		of gold nanoparticles and nanorods with different surface modifications on the structure and
19	626		activity of bovine serum albumin. <i>Langmu</i> ir 27 : 7722-7731.
20	627	88.	Chang Y, McLandsborough L, McClements DJ. 2011. Interactions of a cationic antimicrobial
21	628		(epsilon-polylysine) with an anionic biopolymer (pectin): An isothermal titration calorimetry,
23	629		microelectrophoresis, and turbidity study. J. Agric. Food Chem. 59: 5579-5588.
24	630	89.	Colussi F, Sorensen TH, Alasepp K, Kari J, Cruys-Bagger N, Windahl MS, Olsen JP, Borch K,
25	631		Westh P. 2015. Probing substrate interactions in the active tunnel of a catalytically deficient
26	632		cellohiohydrolase (Cel7) / Biol Chem 290 : 2444-2454
27	633	90	Cummaro A Fotticchia L Franceschin M Giancola C Petraccone L 2011 Binding properties of
20 29	624	50.	human telemoric guadrunley multimore: A new route for drug design. <i>Biochimia</i> 02 : 1202
30	034		1 400
31	635		
32	636	91.	Dahms SO, Koennig I, Roeser D, Guehrs K-H, Mayer MC, Kaden D, Multhaup G, Than ME. 2012.
33	637		Metal binding dictates conformation and function of the amyloid precursor protein (APP) E2
34	638		domain. <i>J. Mol. Biol.</i> 416 : 438-452.
36	639	92.	Dobreva MA, Frazier RA, Mueller-Harvey I, Clifton LA, Gea A, Green RJ. 2011. Binding of
37	640		pentagalloyl glucose to two globular proteins occurs via multiple surface sites.
38	641		Biomacromolecules 12 : 710-715.
39	642	93.	Du X, Dubin PL, Hoagland DA, Sun L. 2014. Protein-selective coacervation with hyaluronic acid.
40	643		Biomacromolecules 15: 726-734.
41 42	644	94.	Edink E, Rucktooa P, Retra K, Akdemir A, Nahar T, Zuiderveld O, van Elk R, Janssen E, van
42	645		Nierop P, van Muijlwijk-Koezen J, Smit AB, Sixma TK, Leurs R, de Esch IJP. 2011. Fragment
44	646		growing induces conformational changes in acetylcholine-binding protein: A structural and
45	647		thermodynamic analysis. J. Am. Chem. Soc. 133 : 5363-5371.
46	648	95	Fox IM Kang K Sherman W Heroux A Sastry GM Baghbanzadeh Lockett MB Whiteside GM
47	640	55.	2015 Interactions between Hofmoister anions and the binding pocket of a protein 1 Am
48	650		Cham Soc 127 2950 2966
49 50	050	0.0	CHEIN, SUL, 137, SOSS-SOO.
51	651	96.	Freiburger LA, Baettig Olvi, Sprules T, Bergnuls Alvi, Auciair K, Mittermaler AK. 2011.
52	652		Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nat. Str.
53	653		Mol. Biol. 18: 288-294.
54	654	97.	Gallegos KM, Conrady DG, Karve SS, Gunasekera TS, Herr AB, Weiss AA. 2012. Shiga Toxin
55 56	655		Binding to Glycolipids and Glycans. <i>Plos One</i> 7 : e30368.
57	656	98.	Ghosh N, Mondal R, Mukherjee S. 2015. Hydrophobicity is the governing factor in the
58	657		interaction of human serum albumin with bile salts. Langmuir 31 : 1095-1104.
59			

2			
3	658	99.	Gundlach J, Dickmanns A, Schroeder-Tittmann K, Neumann P, Kaesler J, Kampf J, Herzberg C,
4	659		Hammer E, Schwede F, Kaever V, Tittmann K, Stulke J, Ficner R. 2015. Identification,
5	660		characterization, and structure analysis of the cyclic di-AMP-binding P-II-like signal
6 7	661		transduction protein DarA. J. Biol. Chem. 290 : 3069-3080.
8	662	100	Guo L Catchmark IM 2013 Binding specificity and thermodynamics of cellulose-hinding
9	662	100.	modules from Trichederma reasei Col7A and Col6A. Diamasromologules 14: 1269 1277
10	003	4.04	modules from michoderma reeser cerva and cerba. Biomacromolecules 14. 1268-1277.
11	664	101.	Hamre AG, Jana S, Holen MM, Mathiesen G, Vaeljamaee P, Payne CM, Sorlie M. 2015.
12	665		Thermodynamic relationships with processivity in <i>Serratia marcescens</i> family 18 chitinases. J.
13	666		Phys. Chem.B 119 : 9601-9613.
14	667	102.	Henry G, Deleu M, Jourdan E, Thonart P, Ongena M. 2011. The bacterial lipopeptide surfactin
15	668		targets the lipid fraction of the plant plasma membrane to trigger immune-related defence
10	669		responses. Cell. Microbiol. 13: 1824-1837.
18	670	103	Herold IM Wigle TI Norris II. Jam R. Korboukh VK. Gao C. Ingerman J.A. Kireev DB. Senisterra
19	671	100.	G. Vedadi M. Trinathy A. Brown PI. Arrowsmith CH. Jin JA. Janzen WP. Frye SV. 2011. Small-
20	672		o, vedadi w, mpathy A, blowin J, Anowsmith Ch, Jin JA, Janzen W, Trye SV. 2011. Sman
21	072		molecule ligands of methyl-lysine binding proteins. J. Wed. Chem. 54, 2504-2511.
22	673	104.	Hoernke M, Schwieger C, Kerth A, Blume A. 2012. Binding of cationic pentapeptides with
23	674		modified side chain lengths to negatively charged lipid membranes: Complex interplay of
24	675		electrostatic and hydrophobic interactions. BBA-Rev Biomembanes 1818: 1663-1672.
25	676	105.	Huang R, Carney RR, Ikuma K, Stellacci F, Lau BLT. 2014. Effects of surface compositional and
20 27	677		structural heterogeneity on nanoparticle-protein interactions: Different protein
28	678		configurations. Acs Nano 8: 5402-5412.
29	679	106.	Jha NS. Kishore N. 2011. Thermodynamic studies on the interaction of folic acid with boyine
30	680		serum albumin / Chem Thermodyn 43 : 814-821
31	691	107	Karonon M. Oravijta M. Mueller Harvey I. Salminon I. P. Groon PJ. 2015. Binding of an
32	001	107.	Allowers allowing of all with the series of the series of the series (DCA). Analysis hubble is the series of the s
33	682		oligomeric eliagitannin series to bovine serum albumin (BSA): Analysis by isothermal titration
34 25	683		calorimetry (ITC). J. Agric. Food Chem. 63: 10647-10654.
36	684	108.	Krimmer SG, Betz M, Heine A, Klebe G. 2014. Methyl, ethyl, propyl, butyl: Futile but not for
37	685		water, as the correlation of structure and thermodynamic signature shows in a congeneric
38	686		series of thermolysin inhibitors. ChemMedChem 9: 833-846.
39	687	109.	Li X, Wang G, Chen D, Lu Y. 2014. Interaction of procyanidin B3 with bovine serum albumin.
40	688		Rsc Advances 4 : 7301-7312.
41	689	110.	Li X. Wang S. 2015. Study on the interaction of (+)-catechin with human serum albumin using
42	690		isothermal titration calorimetry and spectroscopic techniques. New I. Chem. 39 : 386-395
43 11	601	111	Lin H. Kitova EN. Klasson JS. 2014. Moacuring positive cooperativity using the direct ESLMS
45	691	111.	LII H, KILOVA EN, KIASSEI JS. 2014. Measuring positive cooperativity using the unect ESI-WIS
46	692		assay. Cholera toxin B subunit nomopentamer binding to Givi1 pentasaccharide. J. Am. Soc.
47	693		Mass Spectr. 25 : 104-110.
48	694	112.	Lin P-H, Chen R-H, Lee C-H, Chang Y, Chen C-S, Chen W-Y. 2011. Studies of the binding
49	695		mechanism between aptamers and thrombin by circular dichroism, surface plasmon
50	696		resonance and isothermal titration calorimetry. Colloid. Surface. B 88: 552-558.
51 52	697	113.	Loch JI, Bonarek P, Polit A, Ries D, Dziedzicka-Wasylewska M, Lewinski K. 2013. Binding of 18-
บ∠ 53	698		carbon unsaturated fatty acids to bovine beta-lactoglobulin-Structural and thermodynamic
54	699		studies. Int. J. Biol. Macromol. 57: 226-231.
55	700	11/	Macias AT Williamson DS Allen N Borgognoni I Clay A Daniels 7 Dokurno P Drusdalo MI
56	700	114.	Francis CL, Craham CL, House D, Matassova N, Murroy D, Darsons D, Chaw T, Surgers AF
57	701		Trancis GL, Granam CJ, Howes K, Watassova N, Wurray JB, Parsons K, Snaw T, Surgenor AE,
58	/02		ierry L, wang YK, Wood M, Massek AJ. 2011. Adenosine-derived inhibitors of 78 kDa glucose
59		<i>.</i> –	
60		17	

2			
3	703		regulated protein (Grp78) ATPase: Insights into isoform selectivity. J. Med. Chem. 54: 4034-
4	704		4041.
5	705	115.	Madrona Y, Hollingsworth SA, Khan B, Poulos TL. 2013. P450cin active site water: Implications
0 7	706		for substrate binding and solvent accessibility. <i>Biochemistry</i> 52 : 5039-5050.
8	707	116.	Martinez A, Suarez J, Shand T, Magliozzo RS, Sanchez-Delgado RA. 2011. Interactions of arene-
9	708		Ru(II)-chloroquine complexes of known antimalarial and antitumor activity with human serum
10	709		albumin (HSA) and transferrin <i>Linora Biochem</i> 105 · 39-45
11	710	117	McRae IM Ziora ZM Kassara S Cooper MA Smith PA 2015 Ethanol concentration influences
12	711	11/.	the mechanisms of wine tannin interactions with poly(Langline) in model wine L Agric Food
13	711		Chem 63 : 434E 43E3
15	712	110	Chenne of Asta-Assa.
16	/13	118.	Mechovic J, Snyder PW, Mirica KA, Bai S, Mack ET, Kwant RL, Moustakas DT, Heroux A,
17	/14		Whitesides GM. 2011. Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to
18	715		the "hydrophobic wall" of carbonic anhydrase. J. Am. Chem. Soc. 133 : 14017-14026.
19 20	716	119.	Neeb M, Czodrowski P, Heine A, Barandun LJ, Hohn C, Diederich F, Klebe G. 2014. Chasing
20	717		protons: How isothermal titration calorimetry, mutagenesis, and pKa calculations trace the
22	718		locus of charge in ligand binding to a tRNA-binding enzyme. J. Med. Chem. 57: 5554-5565.
23	719	120.	Olsson TSG, Ladbury JE, Pitt WR, Williams MA. 2011. Extent of enthalpy-entropy
24	720		compensation in protein-ligand interactions. Protein Sci. 20: 1607-1618.
25	721	121.	Palde PB, Carroll KS. 2015. A universal entropy-driven mechanism for thioredoxin-target
26	722		recognition. Proc. Natl. Acad. Sci. USA 112: 7960-7965.
28	723	122.	Perspicace S. Rufer AC. Thoma R. Mueller F. Hennig M. Ceccarelli S. Schulz-Gasch T. Seelig J.
29	724		2013 Isothermal titration calorimetry with micelles: Thermodynamics of inhibitor binding to
30	725		carnitine nalmitovltransferase 2 membrane protein <i>Febs Open Bio</i> 3 : 204-211
31	726	172	Oin SB, Shimamoto S, Maruno T, Kohayashi Y, Kawahara K, Yoshida T, Ohkubo T, 2015
32	720	125.	Pincham Pinch Res Co. 469 : 224 220
33	727	124	Biochemi, Biophi, Res. Co. 406, 254-259.
35	728	124.	Ren J, He Y, Chen W, Chen T, Wang G, Wang Z, Xu Z, Luo X, Zhu W, Jiang H, Shen JS, Xu YC.
36	729		2014. Thermodynamic and structural characterization of halogen bonding in protein-ligand
37	730		interactions: A case study of PDE5 and its inhibitors. J. Med. Chem. 57: 3588-3593.
38	731	125.	Reynolds M, Marradi M, Imberty A, Penades S, Perez S. 2012. Multivalent gold glycoclusters:
39	732		High affinity molecular recognition by bacterial lectin PA-IL. Chem. Eur. J. 18: 4264-4273.
40 41	733	126.	Rich AM, Bombarda E, Schenk AD, Lee PE, Cox EH, Spuches AM, Hudson LD, Kieffer B, Wilcox
42	734		DE. 2012. Thermodynamics of Zn2+ binding to Cys(2)His(2) and Cys(2)HisCys zinc fingers and a
43	735		Cys(4) transcription factor site. J. Am. Chem. Soc. 134: 10405-10418.
44	736	127.	Rogez-Florent T, Duhamel L, Goossens L, Six P, Drucbert A-S, Depreux P, Danze P-M, Landy D,
45	737		Goossens J-F, Foulon C. 2014. Label-free characterization of carbonic anhydrase-novel
46	738		inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and
47 48	739		fluorescence-based thermal shift assays. J. Mol. Recognit. 27: 46-56.
40	740	128	Sacco C Skowronsky RA Gade S Kenney IM Spuches AM 2012 Calorimetric investigation of
50	7/1	120.	conner(II) binding to A beta pentides: thermodynamics of coordination plasticity / Biol Inorg
51	741		Chem 17: 521 541
52	742	120	Call IC Thieffing C Dendiere T Facelini M Duke CL Javaramen L Kich KE Klei HE Durendere
53	743	129.	Sack JS, Thierine S, Bandiera T, Fasolini M, Duke GJ, Jayaraman L, Kish KF, Kiel HE, Purandare
04 55	744		AV, ROSELLATILY, THOATH S, XIE DL, BETTRATO JA. 2011. STRUCTURAL DASIS FOR CARIVIL INHIBITION BY
56	/45		indole and pyrazole inhibitors. <i>Biochem. J.</i> 436 : 331-339.
57	746	130.	Safaee N, Kozlov G, Noronha AM, Wilds CJ, Gehring K. 2012. Interdomain allostery promotes
58	747		assembly of the poly(A) mRNA complex with PABP and elF4G. <i>Mol. Cell</i> 48 : 375-386.
59			
60		18	

1

1			
2	740	1.21	Cafi C. Craff C. Jacobson A. Oi L. Danast C. Danwas J. Calari DJ. Cimani E. Midaud C. Dan Aurora C.
3 1	748	131.	San S, Creff G, Jeanson A, Qi L, Basset C, Roques J, Solari PL, Simoni E, Vidaud C, Den Auwer C.
4 5	749		2013. Osteopontin: A uranium phosphorylated binding-site characterization. <i>Chem. Eur. J.</i> 19 :
6	750		11261-11269.
7	751	132.	Sharma S, Maris C, Allain FHT, Black DL. 2011. U1 snRNA directly interacts with polypyrimidine
8	752		tract-binding protein during splicing repression. Mol. Cell 41: 579-588.
9	753	133.	Smith E, Vekaria R, Brown KA, Longstaff C. 2013. Kinetic regulation of the binding of
10	754		prothrombin to phospholipid membranes. <i>Mol. Cell. Biochem</i> . 382 : 193-201.
11	755	134.	Tavares GM. Croguennec T. Le S. Lerideau O. Hamon P. Carvaho AF. Bouhallab S. 2015. Binding
12	756		of folic acid induces specific self-aggregation of lactoferrin. Thermodynamic characterization
14	757		lanamuir 31 : 12/81-12/88
15	757	1.25	Transidae A. Hureau C. Del W. Winterhelter M. Feller D. 2012. Thermodynamic study of Cu2.
16	758	135.	hisdias to the DAUK and CUK analides he insthe and bits the relationster (TC). The the
17	759		binding to the DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the
18	760		weaker competitor glycine. J. Biol. Inorg. Chem. 17: 37-47.
19	761	136.	Wang I, Hennig J, Jagtap PKA, Sonntag M, Valcarcel J, Sattler M. 2014. Structure, dynamics and
20	762		RNA binding of the multi-domain splicing factor TIA-1. <i>Nucleic Acids Res.</i> 42 : 5949-5966.
27	763	137.	Wang S, Chen K, Li L, Guo X. 2013. Binding between Proteins and Cationic Spherical
23	764		Polyelectrolyte brushes: Effect of pH, ionic strength, and stoichiometry. Biomacromolecules
24	765		14 : 818-827.
25	766	138.	Weaver KD. Vrikkis RM. Van Vorst MP. Trullinger J. Vijavaraghavan R. Foureau DM. McKillop
26	767		IH MacEarlane DR Krueger IK Elliott GD 2012 Structure and function of proteins in hydrated
27	768		choline dihydrogen phosphate ionic liquid Phys Chem Chem Phys 14: 790-801
20 20	760	120	Welsch N. Becker AL. Dzubielle L. Dellauff M. 2012. Core shell microgels as "smart" corriers for
30	709	139.	Weisch N, Becker AL, Dzublena J, Banaun M. 2012. Core-shen microgers as smart carners for
31	//0		enzymes. Soft Matter 8: 1428-1436.
32	771	140.	Xu C, Liu K, Tempel W, Demetriades M, Aik W, Schofield CJ, Min J. 2014. Structures of human
33	772		ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N-6-
34	773		methyladenosine RNA demethylation. J. Biol. Chem. 289: 17299-17311.
35	774	141.	Zakharov MN, Bhasin S, Travison TG, Xue R, Ulloor J, Vasan RS, Carter E, Wu F, Jasuja R. 2015.
30 37	775		A multi-step, dynamic allosteric model of testosterone's binding to sex hormone binding
38	776		globulin. <i>Mol. Cell. Endocrinol.</i> 399 : 190-200.
39	777	142.	Zhao T. Chen K. Gu H. 2013. Investigations on the interactions of proteins with polyampholyte-
40	778		coated magnetite nanonarticles / Phys Chem B 117 : 14129-14135
41	770	1/12	Zhao V. Chen I. Han I. Marzinek IK. Mantalaris A. Pistikonoulos EN. Lian G. Bond PI. Noro MG
42	790	145.	2012. Molecular and thermodynamic basic for ECCC (keratin interaction part II) Experimental
43	780		
44 15	/81		Investigation. Aiche J. 59: 4824-4827.
46	782		
47	783	(vi) Li	pids, micelles and membranes
48	784	144.	Brinatti C. Mello LB. Loh W. 2014. Thermodynamic study of the micellization of zwitterionic
49	785		surfactants and their interaction with polymers in water by isothermal titration calorimetry
50	786		Janamuir 20 : 6002-6010
51	700	1 4 5	Combon A. Alsterre Made M. Juarez J. Tenets A. Mistry D. Attward D. Barbase C. Tabada D.
52 53	707	145.	Campon A, Alatorre-Ivieda IVI, Juarez J, Topete A, Iviistry D, Attwood D, Barbosa S, Taboada P,
54	/88		iviosquera V. 2011. Micellisation of triblock copolymers of ethylene oxide and 1,2-butylene
55	789		oxide: Effect of B-block length. J. Colloid Interf. Sci. 361 : 154-158.
56			
57			
58			
59		10	
00		13	

3	790	146.	Fan Z, Tong W, Zheng Q, Lei Q, Fang W. 2013. Surface activity and micellization parameters of
4	791		quaternary ammonium surfactants containing a hydroxyethyl group. J. Chem. Eng. Data 58:
5 6	792		334-342.
7	793	147.	Kamboj R, Bharmoria P, Chauhan V, Singh G, Kumar A, Singh S, Kang TS. 2014. Effect of
8	794		cationic head group on micellization behavior of new amide-functionalized surface active ionic
9	795		liquids. Phys. Chem. Chem. Phys 16: 26040-26050.
10	796	148.	Kroflic A, Sarac B, Bester-Rogac M. 2011. Influence of the alkyl chain length, temperature, and
11 12	797		added salt on the thermodynamics of micellization: Alkyltrimethylammonium chlorides in
13	798		NaCl aqueous solutions. J. Chem. Thermodyn. 43: 1557-1563.
14	799	149.	Walrant A. Correia I. Jiao C-Y. Leguin O. Bent EH. Goasdoue N. Lacombe C. Chassaing G. Sagan
15	800	-	S. Alves ID. 2011. Different membrane behaviour and cellular uptake of three basic arginine-
16	801		rich pentides BBA-Rev <i>Biomembranes</i> 1808 : 382-393
17	802	150	Vokovama H. Jkeda K. Wakabayashi M. Jshihama V. Nakano M. 2013. Effects of Linid
10	802 802	150.	Membrane Curvature on Linid Packing State Evaluated by Isothermal Titration Calorimetry
20	803		Internation Calorinetry.
21	804	4 5 4	Langmun 29 : 857-860.
22	805	151.	Zhang H, Zeeb B, Saiminen H, Weiss J. 2015. Isothermal titration calorimetric analysis on
23	806		solubilization of an octane oil-in-water emulsion in surfactant micelles and surfactant-anionic
24 25	807		polymer complexes. J. Colloid Interf. Sci. 438: 7-13.
26	808		
27	809	(vii) P	olysaccharides
28	810	152.	Huang Y, Lapitsky Y. 2011. Monovalent salt enhances colloidal stability during the formation of
29 30	811		chitosan/tripolyphosphate microgels. Langmuir 27: 10392-10399.
31	812	153.	Menchicchi B, Fuenzalida JP, Bobbili KB, Hensel A, Swamy MJ, Goycoolea FM. 2014. Structure
32	813		of chitosan determines its interactions with mucin. <i>Biomacromolecules</i> 15 : 3550-3558.
33	814	154.	Mertins O, Dimova R. 2011. Binding of chitosan to phospholipid vesicles studied with
34	815		isothermal titration calorimetry. <i>Langmuir</i> 27 : 5506-5515.
36	816	155.	Sheng G-P, Xu J, Luo H-W, Li W-W, Li W-H, Yu H-Q, Xie Z, Wei S-Q, Hu F-C. 2013.
37	817		Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric
38	818		substances (EPS) of activated sludge. Water Res. 47: 607-614.
39	819		
40	820	(viii) I	Nucleic acids
41	020	(•, ·	
43	821	156.	Alatorre-Meda M, Taboada P, Hardl F, Wagner T, Freis M, Rodriguez JR. 2011. The influence of
44	822		chitosan valence on the complexation and transfection of DNA The weaker the DNA-chitosan
45	823		binding the higher the transfection efficiency. <i>Colloid. Surface. B</i> 82: 54-62.
46	824	157.	Boncina M, Lah J, Prislan I, Vesnaver G. 2012. Energetic basis of human telomeric DNA folding
47 48	825		into G-quadruplex structures. J. Am. Chem. Soc. 134: 9657-9663.
49	826	158.	Haris P, Varughese M, Haridas M, Sudarsanakumar C. 2015. Energetics, thermodynamics, and
50	827		molecular recognition of piperine with DNA. J. Chem. Inf. Model. 55: 2644-2656.
51	828	159.	Khakshoor O, Wheeler SE, Houk KN, Kool ET. 2012. Measurement and theory of hydrogen
52	829		bonding contribution to isosteric DNA base pairs. J. Am. Chem. Soc. 134 : 3154-3163.
53 54	830	160.	Kumar S, Xue L, Arya DP. 2011. Neomycin-neomycin dimer: An all-carbohydrate scaffold with
55	831		high affinity for AT-rich DNA duplexes. J. Am. Chem. Soc. 133: 7361-7375.
56			
57			
58			

1			
2	027	161	Lowis FA Mundo M Wang S Pottig M Lo V Mashha V Wilson WD 2011 Complexity in the
3	032	101.	Lewis LA, Munde M, Wang S, Rettig M, Le V, Machina V, Wilson WD. 2011. Complexity in the
5	033		binding of minor groove agents. Hetropsin has two thermodynamically different DNA binding
6	834		modes at a single site. <i>Nucleic Acias Res.</i> 39 : 9649-9658.
7	835	162.	Lu Y, Wang G, Tang W, Liao X, Xu M, Li X. 2011. Study on the interaction of amino phosphine
8	836		ester derivatives with DNA by spectroscopy, modeling and calorimetry. Spectrochim. Acta A
9	837		82 : 247-252.
10	838	163.	Priftis D, Laugel N, Tirrell M. 2012. Thermodynamic characterization of polypeptide complex
12	839		coacervation. <i>Langmuir</i> 28 : 15947-15957.
13	840	164.	Subastri A, Ramamurthy CH, Suyavaran A, Mareeswaran R, Rao PL, Harikrishna M, Kumar MS,
14	841		Sujatha V. Thirunavukkarasu C. 2015. Spectroscopic and molecular docking studies on the
15	842		interaction of troverutin with DNA Int. I Biol Macromol 78: 122-129
16	042 042	165	Trotta P. Do Tito S. Lauri I. La Piotra V. Marinelli I. Cosconati S. Martino I. Conto MP. Mayol I.
17	043	105.	Neuelline E. Denderne A. 2011. A mene deteiled gisture of the interestions between virtual
18	844		Novellino E, Randazzo A. 2011. A more detailed picture of the interactions between virtual
19 20	845		screening-derived hits and the DNA G-quadruplex: NMR, molecular modelling and ITC studies.
20	846		Biochimie 93 : 1280-1287.
22	847	166.	Vander Meulen KA, Butcher SE. 2012. Characterization of the kinetic and thermodynamic
23	848		landscape of RNA folding using a novel application of isothermal titration calorimetry. Nucleic
24	849		Acids Res. 40 : 2140-2151.
25	850	167.	Wang G. Wu H. Wang D. Yan C. Lu Y. 2013. Exploring the binding mechanism of
26	851	-	phosphoramidate derivative with DNA: Spectroscopy calorimetry and modeling Spectrochim
27	852		Acta A 104: A92-A96
28 20	052	100	Actura 104. 492-490.
30	000	108.	Wang G, Yan C, Lu Y. 2013. Exploring DIVA binding properties and biological activities of
31	854		dihydropyrimidinones derivatives. <i>Colloids Surface. B</i> 106 : 28-36.
32	855	169.	Zhang J, Jones CP, Ferre-D'Amare AR. 2014. Global analysis of riboswitches by small-angle X-
33	856		ray scattering and calorimetry. BBA-Gene Regul. Mech. 1839 : 1020-1029.
34	857		
35	858	(ix) Sy	ynthetic chemicals, polymers and nanoparticles
30 37	9E0	170	Adriagnesons L. Gil Ramíroz G. Frontora A. Quiñonaro D. Escudoro Adán EC. Ballostor D. 2014
38	009	170.	Aunaenssens L, Gir-Rainifez G, Frontera A, Quinonero D, Escudero-Adan EC, Banester P. 2014.
39	860		Thermodynamic characterization of halide– π interactions in solution using "two-wall" aryl
40	861		extended calix[4]pyrroles as model system. J. Am. Chem. Soc. 136 , 3208-3218.
41	862	171.	Amendola V, Fabbrizzi L, Mosca L, Schmidtchen F-P. 2011. Urea-, squaramide-, and
42	863		sulfonamide-based anion receptors: A thermodynamic study. Chem. Eur. J. 17: 5972-5981.
43	864	172.	Aparicio F, Garcia F, Sanchez L. 2013. Supramolecular polymerization of C3-symmetric
44	865		organogelators: Cooperativity, solvent, and gelation relationship. Chem. Eur. J. 19: 3239-3248.
45 46	866	173.	Arranz-Mascaros P, Bazzicalupi C, Bianchi A, Giorgi C, Godino-Salido M-L, Gutierrez-Valero M-
47	867		D Lopez-Garzon R Savastano M 2013 Thermodynamics of anion- π interactions in aqueous
48	868		solutions 1 Am Chem Soc 135: 102-105
49	000 060	174	Protin T. Concelver S. Porthault P. Cavagnat D. Buffeteau T. 2012. Influence of the cavity size
50	009	1/4.	of water coluble an ater here on their highling was active for and the liter in a soluble and the liter in the second state of the second sta
51	870		of water-soluble cryptophanes on their binding properties for cesium and thallium cations. J.
52	871		<i>Phys. Chem.B</i> 117 : 12593-12601.
53 54	872	175.	Castellano BM, Eggers DK. 2013. Experimental support for a desolvation energy term in
54 55	873		governing equations for binding equilibria. J. Phys. Chem. B 117: 8180-8188.
56	874	176.	Cawthray JF, Creagh AL, Haynes CA, Orvig C. 2015. Ion exchange in hydroxyapatite with
57	875		lanthanides. <i>Inorg. Chem</i> . 54 : 1440-1445.
58			
59			
60		21	

2			
3	876	177.	Chen S, Yamasaki M, Polen S, Gallucci J, Hadad CM, Badjic JD. 2015. Dual cavity basket
4	877		promotes encapsulation in water in an allosteric fashion. J. Am. Chem. Soc. 137: 12276-12281.
5	878	178.	Dale EJ. Vermeulen NA. Thomas AA. Barnes JC. Juricek M. Blackburn AK. Strutt NL. Sarieant
6	879		AA Stern CL Denmark SE Stoddart IE 2014 ExCage J Am Chem Soc 136: 10669-10682
/ 8	880	170	De Lisi R. Giammona G. Lazzara G. Milioto S. 2011. Conclumers sensitive to temperature and
9	001	175.	be Lisi R, Gianniona G, Lazzara G, Minioto S. 2011. Copolymens sensitive to temperature and
10	881		pH in water and in water plus oil mixtures: A DSC, ITC and volumetric study. J. Colloid Interface
11	882		Sci. 354 : 749-757.
12	883	180.	Dionisio M, Oliviero G, Menozzi D, Federici S, Yebeutchou RM, Schmidtchen FP, Dalcanale E,
13	884		Bergese P. 2012. Nanomechanical recognition of N-methylammonium salts. J. Am. Chem. Soc.
14	885		134 : 2392-2398.
15	886	181.	Francisco V, Piñeiro A, Nau WM, Garcia-Rio L. 2013. The "true" affinities of metal cations to p-
16	887		sulfonatocalix[4]arene: a thermodynamic study at neutral pH reveals a pitfall due to salt
17	888		effects in microcalorimetry. <i>Chem. Fur. J.</i> 19 : 17809-17820
10	000	107	Cibb CLD. Ootling EE Volaga S. Cibb BC 2015. Thermodynamic profiles of calt offects on a
20	009	102.	Gibb CED, Oething EE, Velaga S, Gibb BC. 2015. Thermodynamic promes of salt effects of a
21	890		nost-guest system: New Insight into the normeister effect. J. Phys. Chem. B 119: 5624-5638.
22	891	183.	Hansen A, Bannwarth C, Grimme S, Petrovic P, Werle C, Djukic J-P. 2014. The
23	892		Thermochemistry of London dispersion-driven transition metal reactions: Getting the 'right
24	893		answer for the right reason'. Chemistryopen 3 : 177-189.
25	894	184.	Holzerny P, Ajdini B, Heusermann W, Bruno K, Schuleit M, Meinel L, Keller M. 2012.
26	895		Biophysical properties of chitosan/siRNA polyplexes: Profiling the polymer/siRNA interactions
28	896		and bioactivity. J. Control. Release 157: 297-304.
29	897	185	Hornung L Fankhauser D. Shirtcliff LD. Praetorius A. Schweizer WB. Diederich F. 2011
30	000	105.	Cycloalkana and aligyclic betarogycla complexation by new cwitchable recorrein[4] arong bacad
31	090		Cycloalkane and ancyclic neterocycle complexation by new switchable resolutin[4] arene-based
32	899		container molecules: NMR and ITC binding studies. <i>Chem. Eur. J.</i> 17: 12362-12371.
33	900	186.	Huang Y, Lapitsky Y. 2013. Determining the colloidal behavior of ionically cross-linked
34	901		polyelectrolytes with isothermal titration calorimetry. <i>J. Phys. Chem.B</i> 117 : 9548-9557.
35	902	187.	Jungbauer SH, Schindler S, Herdtweck E, Keller S, Huber SM. 2015. Multiple multidentate
37	903		halogen bonding in solution, in the solid state, and in the (calculated) gas phase. Chem. Eur. J.
38	904		21 : 13625-13636.
39	905	188.	Kabiri M. Bushnak I. McDermot MT. Unsworth LD.2013. Toward a mechanistic understanding
40	906	2001	of ionic self-complementary pentide self-assembly: Role of water molecules and ions
41	007		Biomacromologulos 14: 2042-2050
42	907	4.00	Biolificioniolecules 14. 5945-5950.
43	908	189.	Le VH, Yanney M, McGuire M, Sygula A, Lewis EA. 2014. Thermodynamics of host-guest
44	909		interactions between fullerenes and a buckycatcher. J. Phys. Chem B 118 : 11956-11964.
40	910	190.	Lin W, Walter J, Burger A, Maid H, Hirsch A, Peukert W, Segets D. 2015. A general approach to
40	911		study the thermodynamics of ligand adsorption to colloidal surfaces demonstrated by means
48	912		of catechols binding to zinc oxide quantum dots. Chem. Mater. 27: 358-369.
49	913	191.	Lisbjerg M, Nielsen BE, Milhoj BO, Sauer SPA, Pittelkow M.2015. Anion binding by biotin[6]uril
50	914		in water. Ora. Biomol. Chem. 13: 369-373.
51	915	192	McCann N. Maeder M. Hasse H. 2011. A calorimetric study of carbamate formation. J. Chem
52	016	152.	Thermodyn 12 : 664 660
53	910	102	Maan C. Nuka L. Missel M. Stanzanhan D. Mandashki M. Danzan Niselatti F. Thomas A.
04 55	917	193.	ivioers C, Numi L, Wissei IVI, Stangenberg K, Iviondesnki IVI, Berger-Nicoletti E, Thomas A,
56	918		Schaettel D, Koynov K, Klapper M, Zendel M, Frey H. 2013. Supramolecular linear-g-
57	919		hyperbranched graft polymers: Topology and binding strength of hyperbranched side chains.
58	920		Macromolecules 46 : 9544-9553.
59			
60		22	

2			
3	921	194.	Mokhtari B, Pourabdollah K. 2012. Binding mechanisms of nano-baskets toward alkali metals.
4	922		J. Therm. Anal. Calorim. 110: 1043-1051.
5	923	195.	Schumacher S, Katterle M, Hettrich C, Paulke B-R, Hall DG, Scheller FW, Gajovic-Eichelmann N.
6 7	924		2011. Label-free detection of enhanced saccharide binding at pH 7.4 to nanoparticulate
8	925		benzoboroxole based receptor units. J. Mol. Recognit. 24: 953-959.
9	926	196.	Taladriz-Blanco P, Buurma NJ, Rodriguez-Lorenzo L, Perez-Juste J, Liz-Marzan LM, Herves P.
10 11	927		2011. Reversible assembly of metal nanoparticles induced by penicillamine. Dynamic
12	928		formation of SERS hot spots. J. Mater. Chem. 21: 16880-16887.
13	929	197.	Turcu I, Mic M. 2013. Size dependence of molecular self-assembling in stacked aggregates. 2.
14	930		Heat exchange effects. J. Phys. Chem. B 117: 9083-9093.
15 16	931	198.	Uchman M, Gradzielski M, Angelov B, Tosner Z, Oh J, Chang T, Stepanek M, Prochazka K.2013.
17	932		Thermodynamic and kinetic aspects of coassembly of PEO-PMAA block copolymer and DPCI
18	933		surfactants into ordered nanoparticles in aqueous solutions studied by ITC, NMR, and time-
19	934		resolved SAXS techniques. Macromolecules 46: 2172-2181.
20	935	199.	Wang Z, Xu S, Acosta E. 2015. Heat of adsorption of surfactants and its role on nanoparticle
21	936		stabilization. J. Chem. Thermodyn. 91:256-266.
23	937	200.	Werber L, Preiss LC, Landfester K, Munoz-Espi R, Mastai Y. 2015. Isothermal titration
24	938		calorimetry of chiral polymeric nanoparticles. Chirality 27: 613-618.
25	939	201.	Willerich I, Groehn F. 2011. Thermodynamics of photoresponsive polyelectrolyte-dye
20 27	940		assemblies with irradiation wavelength triggered particle size. <i>Macromolecules</i> 44 : 4452-4461.
28	941	202.	Wszelaka-Rylik M, Gierycz P. Isothermal titration calorimetry (ITC) study of natural
29	942		cyclodextrins inclusion complexes with drugs. J. Therm. Anal. Calorim. 111: 2029-2035.
30	943	203.	Wyrzykowski D, Pilarski B, Jacewicz D, Chmurzynski L. 2013. Investigation of metal-buffer
31 32	944		interactions using isothermal titration calorimetry. J. Therm. Anal. Calorim. 111: 1829-1836.
33	945	204.	Wyrzykowski D, Zarzeczanska D, Jacewicz D, Chmurzynski L. 2011. Investigation of copper(II)
34	946		complexation by glycylglycine using isothermal titration calorimetry. J. Therm. Anal. Calorim.
35	947		105 : 1043-1047.
36 37	948	205.	Xu Z, Singh NJ, Kim SK, Spring DR, Kim KS, Yoon J. 2011. Induction-driven stabilization of the
38	949		anion-pi interaction in electron-rich aromatics as the key to fluoride inclusion in imidazolium-
39	950		cage receptors. Chem. Eur. J. 17: 1163-1170.
40	951	206.	Yousefpour P, Atyabi F, Farahani EV, Sakhtianchi R, Dinarvand R. 2011. Polyanionic
41	952		carbohydrate doxorubicin-dextran nanocomplex as a delivery system for anticancer drugs: in
43	953		vitro analysis and evaluations. Int. J. Nanomed. 6: 1487-1496.
44	954	207.	Zeng Z, Patel J, Lee S-H, McCallum M, Tyagi A, Yan M, Shea KJ. 2012. Synthetic polymer
45	955		nanoparticle-polysaccharide interactions: A systematic study. J. Am. Chem. Soc. 134: 2681-
46	956		2690.
47	957		
49	958	(x) En	izyme kinetics
50	050	200	·
51	959	208.	Aguirre C, Condado-Morales I, Olguin LF, Costas M. 2015. Isothermal titration calorimetry
52 53	960		determination of individual rate constants of trypsin catalytic activity. Anal. Biochem. 479: 18-
53 54	961	• • •	
55	962	209.	Bai W, Shen J, Zhu Y, Men Y, Sun Y, Ma Y. 2015. Characteristics and kinetic properties of L-
56	963		rnamnose isomerase from <i>Bacillus subtilis</i> by isothermal titration calorimetry for the
57 59	964		production of D-allose. Food Sci. Technol. Res. 21: 13-22.
59			
60		23	

2			
3	965	210.	Demarse NA, Killian MC, Hansen LD, Quinn CF. 2013. Determining enzyme kinetics via
4	966		isothermal titration calorimetry. Methods in molecular biology (Clifton, N.J.) 978:21-30
5	967	211.	Ertan H, Siddigui KS, Muenchhoff J, Charlton T, Cavicchioli R. 2012. Kinetic and thermodynamic
6	968		characterization of the functional properties of a hybrid versatile peroxidase using isothermal
7 8	969		titration calorimetry. Insight into manganese peroxidase activation and lignin peroxidase
9	070		inhibition <i>Riochimia</i> 04 : 1221 1221
10	970	212	Minibition. Biochinne 54. 1221-1231.
11	971	212.	krauss M, Zebisch M, Strater N. 2014. Development of an ITC based enzyme assay for
12	972		nucleoside triphosphate diphosphonydrolases (NTPDases). Purinerg.Signal. 10: 751-752.
13	973	213.	Maximova K, Trylska J. 2015. Kinetics of trypsin-catalyzed hydrolysis determined by isothermal
14 15	974		titration calorimetry. Anal. Biochem. 486: 24-34.
15 16	975	214.	Mendez-Lorenzo L, Porras-Dominguez JR, Raga-Carbajal E, Olvera C, Rodriguez-Alegria ME,
17	976		Carrillo-Nava E, Costas M, Lopez Munguia A. 2015. Intrinsic levanase activity of Bacillus subtilis
18	977		168 levansucrase (SacB). PloS one 10: e0143394.
19	978	215.	Olsen SN, Bohlin C, Murphy L, Borch K, McFarland KC, Sweeny MD, Westh P. 2011. Effects of
20	979		non-ionic surfactants on the interactions between cellulases and tannic acid: A model system
21	980		for cellulase-poly-phenol interactions Enzyme and Microb Tech 49 : 353-359
22	981	216	Rohatgi N. Gudmundsson S. Rolfsson O. 2015. Kinetic analysis of gluconate phosphorylation by
23	002	210.	human gluconakinaso using isothermal titration calorimetry. <i>EEPS Lett</i> E90 : 2548 EE
25	902	217	Nullian gluconokinase using isothermal titration calorimetry. <i>FEBS Lett.</i> 365 . 5548-55.
26	983	217.	Volkova N, Ibrahim V, Hatti-Kaul R. 2012. Laccase catalysed oxidation of syringic acid:
27	984		Calorimetric determination of kinetic parameters. <i>Enzyme Microb. Tech.</i> 50 : 233-237.
28	985		
29	986	(xi) P	re-2011 and non-ITC references
30	987	218.	Wiseman T. Williston S. Brandts JF. Lin LN, 1989. Rapid measurement of binding constants and
32	988	_	heats of hinding using a new titration calorimeter Anal Biochem 179 : 131–137
33	989	219	Kurivan L Konforti B. Wemmer D. 2013. The Molecules of Life: Physical and Chemical
34	000	215.	Principles Carland Science: New York
35	990	220	Atking D. Do Doulo I. 2011. Drugical Chemistry for the Life Eciences. 2 nd Edition. W. H. Erseman
36	991	220.	Atkins P, De Paula J. 2011. Physical Chemistry for the Life Sciences, 2 Edition. W. H. Freeman
38	992		and Company: New York.
39	993	221.	Kozliak El, Lambert FL. 2005. "Order-to-disorder" for entropy change? Consider the numbers!
40	994		<i>Chem. Educator</i> 10 : 24-25.
41	995	222.	Frank HS, Evans MW. 1945. Free volume and entropy in condensed systems. 3. Entropy in
42	996		binary liquid mixtures – partial molal entropy in dilute solutions – structure and
43	997		thermodynamics in aqueous electrolytes. J. Chem. Phys. 13: 507-532.
44 45	998	223.	Head-Gordon T. 1992. Is water structure around hydrophobic groups clathrate-like? Proc.
46	999		Natl. Acad. Sci. USA 92 : 8308-8312.
47	1000	224.	Lambert FL. 2006. A modern view of entropy. <i>Chemistry</i> 15 : 13-21.
48	1001	225.	Ebbinghaus S. Kim SI. Heyden M. Yu X. Heugen U. Gruebele M. Leitner DM. Havenith M. 2007.
49	1002		An extended dynamical hydration shell around proteins <i>Proc. Natl. Acad. Sci.</i> 104 : 20749-
50	1002		
51 52	1003	226	Byo IW/ Moliga & Egraphou D. Cingua G. Zoitlar IA. Falconer BI 2014. Analysis of the
53	1004	220.	Bye JW, Meliga S, Feraciou D, Cinque G, Zeitier JA, Faiconer RJ. 2014. Analysis of the
54	1005		nyuration water around bovine serum albumin using teranertz coherent synchrotron
55	1006		radiation. J. Phys. Chem. A 118 : 83-88.
56			
57			
28 50			
00			

1			
2	1007	227	Comez L. Luni L. Morresi A. Paolantoni M. Sassi P. 2013. More is different: Experimental
4	1007	227.	results on the effect of hiomolecules on the dynamics of hydration water <i>L Phys. Chem. Lett</i>
5	1009		4 : 1188–1197
6	1005	228	4. 1100 1192.
/ 8	1010	220.	hiological macromolecules over extended distances 1 Am. Chem. Soc. 136 : 188–194
9	1011	220	Wallace VP. Forachou D. Ko P. Day K. Liddin S. Cacas Finet L van der Waal CF. Falconer PI
10	1012	229.	Zaitlar IA 2015 Modulation of the hydration water around monoclonal antibodies on addition
11	1013		of excipients detected by tershertz time domain spectroscopy <i>J. Pharma. Sci.</i> 104 : 4025–
12	1014		4022
13	1015	220	4055.
15	1010	230.	signishion solarimetry. Angl. Biochem 277 : 260, 266
16	1017	221	Ultration calorimetry. Andi. Biochem. 277: 260–266.
17	1018	231.	verazquez-Campoy A, Freire E. 2008. Isothermal utration calorimetry to determine association
18 10	1019		constants for high-attinity ligands. <i>Nat. Protoc.</i> 1: 186–191.
20	1020	232.	Collins, KD. 1995. Sticky lons in biological systems. <i>Proc. Natl. Acad. Sci. USA</i> 92 : 5553-5557.
21	1021	233.	Bye Jw, Falconer RJ. 2014. Three-stages of lysozyme thermal stabilization by high and medium
22	1022		charge density anions. J. Phys. Chem B 118: 4282-4286.
23	1023	234.	Platts L, Falconer RJ. 2015. Controlling protein stability: Mechanisms revealed using
24	1024		formulations of arginine, glycine and guanidinium HCI with three globular proteins. <i>Int.</i>
26	1025		J.Pharm. 486 : 131-135.
27	1026		
28 20	1027		
30			
31	1028		
32	1020		
33	1029		
35			
36			
37			
38 39			
40			
41			
42			
43 44			
45			
46			
47			
48 40			
49 50			
51			
52			
53 54			
55			
56			
57			
58 50			
ວອ 60		25	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		25	

Figure 1 105x73mm (300 x 300 DPI)

154x90mm (300 x 300 DPI)