293 research outputs found
Synthesis of Germanium Nanocrystals and its Possible Application in Memory Devices
A novel method of synthesizing and controlling the size of germanium nanocrystals was developed. A tri-layer structure comprising of a thin (~5nm) SiO₂ layer grown using rapid thermal oxidation (RTO), followed by a layer of Ge+SiO₂ of varying thickness (6 - 20 nm) deposited using the radio frequency (r.f.) co-sputtering technique and a SiO₂ cap layer (50nm) deposited using r.f. sputtering, was investigated. It was verified using TEM that germanium nanocrystals of sizes ranging from 6 â 20 nm were successfully fabricated after thermal annealing of the tri-layer structure under suitable conditions. The nanocrystals were found to be well confined by the RTO SiO₂ and the cap SiO₂ under specific annealing conditions. The electrical properties of the tri-layer structure have been characterized using MOS capacitor test devices. A significant hysteresis can be observed from the C-V measurements and this suggests the charge storage capability of the nanocrystals. The proposed technique has the potential for fabricating memory devices with controllable nanocrystals sizes.Singapore-MIT Alliance (SMA
Catalytic hydroacetylenation of carbodiimides with homoleptic alkaline earth hexamethyldisilazides
The homoleptic alkaline earth hexamethyldisilazides, [M{N(SiMe3)2}2(THF)2] (M = Mg, Ca, Sr), are shown to be efficient precatalysts for the hydroacetylenation of organic carbodiimides with alkyl- and arylacetylenes.</p
Developing a Wireless Charging Concept via Loosely Coupled Inductive Power Transfer for Mobile Applications
This paper aims to develop a charging method for mobile applications, i.e electric vehicle via loosely coupled inductive power transfer (LCIPT) method. This method enables wireless power transmission from a stationary power source to a moving load, which is the electric vehicle in our case. In this paper, a prototype capable to deliver power efficiently from a stationary power source to a moving load is developed. The prototype is designed in a small scale low power model of 12 Volt 5 Watt DC input in order to prove the proposed method is applicable and could be widely used in future works through the evolution of wireless power transfer (WPT) technology. To be specific, in this project, Class E resonant inverter is used to convert the DC source to AC source at 1 MHz resonant frequency. Analysis is done on different configurations and setups of the transmission coils. Compensator circuit is also designed at the transmission coil to boost the power transfer efficiency. The output of the wireless power transmission is tested on DC-motorcar and LED. At the end, a prototype is successfully developed
Electron-positron pair production in an arbitrary polarized ultrastrong laser field
Electron-positron pair production in an arbitrary polarized ultrastrong laser
field is investigated in the first order perturbation approximation in which
the Volkov states are used for convenient calculation of scattering amplitude
and cross section. It is found surprisingly that the optimal pair production
depends strongly on the polarization. For some cases of field parameters, the
optimal field is elliptically polarized or evenly circularly polarized one,
rather than the usual linear polarization as indicated by previous works. Some
insights into pair generation are given and some interesting unexpected
features are also discussed briefly.Comment: 20 pages, 10 figure
Connecting photometric and spectroscopic granulation signals with CHEOPS and ESPRESSO
Context. Stellar granulation generates fluctuations in photometric and spectroscopic data whose properties depend on the stellar type, composition, and evolutionary state. Characterizing granulation is key for understanding stellar atmospheres and detecting planets. Aims. We aim to detect the signatures of stellar granulation, link spectroscopic and photometric signatures of convection for main-sequence stars, and test predictions from 3D hydrodynamic models. Methods. For the first time, we observed two bright stars (Teff = 5833 and 6205 K) with high-precision observations taken simultaneously with CHEOPS and ESPRESSO. We analyzed the properties of the stellar granulation signal in each individual dataset. We compared them to Kepler observations and 3D hydrodynamic models. While isolating the granulation-induced changes by attenuating and filtering the p-mode oscillation signals, we studied the relationship between photometric and spectroscopic observables. Results. The signature of stellar granulation is detected and precisely characterized for the hotter F star in the CHEOPS and ESPRESSO observations. For the cooler G star, we obtain a clear detection in the CHEOPS dataset only. The TESS observations are blind to this stellar signal. Based on CHEOPS observations, we show that the inferred properties of stellar granulation are in agreement with both Kepler observations and hydrodynamic models. Comparing their periodograms, we observe a strong link between spectroscopic and photometric observables. Correlations of this stellar signal in the time domain (flux versus radial velocities, RV) and with specific spectroscopic observables (shape of the cross-correlation functions) are however difficult to isolate due to S/N dependent variations. Conclusions. In the context of the upcoming PLATO mission and the extreme precision RV surveys, a thorough understanding of the properties of the stellar granulation signal is needed. The CHEOPS and ESPRESSO observations pave the way for detailed analyses of this stellar process
Examining the orbital decay targets KELT-9 b, KELT-16 b, and WASP-4 b, and the transit-timing variations of HD 97658 b,
Context. Tidal orbital decay is suspected to occur for hot Jupiters in particular, with the only observationally confirmed case of this being WASP-12 b. By examining this effect, information on the properties of the host star can be obtained using the so-called stellar modified tidal quality factor QâČâ, which describes the efficiency with which the kinetic energy of the planet is dissipated within the star. This can provide information about the interior of the star. Aims. In this study, we aim to improve constraints on the tidal decay of the KELT-9, KELT-16, and WASP-4 systems in order to find evidence for or against the presence of tidal orbital decay. With this, we want to constrain the QâČâ value for each star. In addition, we aim to test the existence of the transit timing variations (TTVs) in the HD 97658 system, which previously favoured a quadratic trend with increasing orbital period. Methods. Making use of newly acquired photometric observations from CHEOPS (CHaracterising ExOplanet Satellite) and TESS (Transiting Exoplanet Survey Satellite), combined with archival transit and occultation data, we use Markov chain Monte Carlo (MCMC) algorithms to fit three models to the data, namely a constant-period model, an orbital-decay model, and an apsidal-precession model. Results. We find that the KELT-9 system is best described by an apsidal-precession model for now, with an orbital decay trend at over 2 Ï being a possible solution as well. A Keplerian orbit model with a constant orbital period provides the best fit to the transit timings of KELT-16 b because of the scatter and scale of their error bars. The WASP-4 system is best represented by an orbital decay model at a 5 Ï significance, although apsidal precession cannot be ruled out with the present data. For HD 97658 b, using recently acquired transit observations, we find no conclusive evidence for a previously suspected strong quadratic trend in the data
A full transit of v 2 Lupi d and the search for an exomoon in its Hill sphere with CHEOPS
The planetary system around the naked-eye star v2 Lupi (HD 136352; TOI-2011) is composed of three exoplanets with masses of 4.7, 11.2, and 8.6 Earth masses (Mâ). The TESS and CHEOPS missions revealed that all three planets are transiting and have radii straddling the radius gap separating volatile-rich and volatile-poor super-earths. Only a partial transit of planet d had been covered so we re-observed an inferior conjunction of the long-period 8.6 Mâ exoplanet v2 Lup d with the CHEOPS space telescope. We confirmed its transiting nature by covering its whole 9.1 h transit for the first time. We refined the planet transit ephemeris to P = 107.13610.0022+0.0019 days and Tc = 2459009.77590.0096+0.0101 BJDTDB, improving by ~40 times on the previously reported transit timing uncertainty. This refined ephemeris will enable further follow-up of this outstanding long-period transiting planet to search for atmospheric signatures or explore the planet s Hill sphere in search for an exomoon. In fact, the CHEOPS observations also cover the transit of a large fraction of the planet s Hill sphere, which is as large as the Earth s, opening the tantalising possibility of catching transiting exomoons. We conducted a search for exomoon signals in this single-epoch light curve but found no conclusive photometric signature of additional transiting bodies larger than Mars. Yet, only a sustained follow-up of v2 Lup d transits will warrant a comprehensive search for a moon around this outstanding exoplanet
Semileptonic Meson Decays in the Quark Model: An Update
We present the predictions of ISGW2, an update of the ISGW quark model for
semileptonic meson decays. The updated model incorporates a number of features
which should make it more reliable, including the constraints imposed by Heavy
Quark Symmetry, hyperfine distortions of wavefunctions, and form factors with
more realistic high recoil behaviors.Comment: All text and tables contained in the ".latex" file and all figures
(14) contained in the ".uu" file
Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10-11 to 5.0 × 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation
Measurement of the branching ratio Î(Îbâ° â Ï(2S)Î0)/Î(Îbâ° â J/ÏÎ0) with the ATLAS detector
An observation of the decay and
a comparison of its branching fraction with that of the decay has been made with the ATLAS detector in
proton--proton collisions at TeV at the LHC using an integrated
luminosity of fb. The and mesons are
reconstructed in their decays to a muon pair, while the decay is exploited for the baryon reconstruction. The
baryons are reconstructed with transverse momentum GeV and pseudorapidity . The measured branching ratio of
the and decays is , lower than the expectation from the
covariant quark model.Comment: 12 pages plus author list (28 pages total), 5 figures, 1 table,
published on Physics Letters B 751 (2015) 63-80. All figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2013-08
- âŠ