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Abstract

We carried out a trans-ancestry genome-wide association and replication study of blood pressure 

phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. 

We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 

5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA 

methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA 

methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The 

sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, 

KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The 

new and known genetic variants predict increased left ventricular mass, circulating levels of NT-

proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide 

new evidence for the role of DNA methylation in blood pressure regulation.

High blood pressure, which affects more than 1 billion people worldwide, is a major risk 

factor for myocardial infarction, stroke and chronic kidney disease. Approximately 9 million 

deaths each year are attributable to high blood pressure, including >50% of deaths from 

coronary heart disease and stroke1,2. High blood pressure is more prevalent in people of East 

Asian and South Asian ancestry and is a major contributor to their increased risk of stroke 

and coronary heart disease3,4. Genome-wide association studies (GWAS) have identified 

over 50 genetic loci influencing blood pressure in predominantly European populations5–16. 

A role for epigenetic mechanisms in blood pressure regulation has also been suggested17–20.

We carried out a GWAS in East Asians and South Asians, as well as Europeans, to seek 

both cosmopolitan and population-specific genetic effects for five blood pressure 

phenotypes: systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure, 
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mean arterial pressure (MAP) and hypertension (Supplementary Fig. 1) (ref. 5). We then 

sought DNA coding and gene regulatory mechanisms, including DNA methylation and gene 

transcription, to help explain the relationships we observed between sequence variation and 

blood pressure.

RESULTS

Genome-wide association and replication testing

We used genome-wide association data from 99,994 individuals of East Asian (n = 31,516), 

European (n = 35,352) and South Asian (n = 33,126) ancestry. Characteristics of the 

participants and information on the genotyping arrays and imputation are summarized in 

Supplementary Tables 1–3. Phenotype-specific meta-analysis was carried out separately for 

East Asian, European and South Asian samples, followed by a meta-analysis across the three 

ancestral population groups.

The trans-ancestry genome-wide association results identified 4,077 variants with P < 1 × 

10−4 against any blood pressure phenotype, distributed among 630 genetic loci. At each 

locus, we identified the sentinel SNP (the SNP with the lowest P value against any 

phenotype) and carried out combined analysis with phenotype-specific results from the 

International Consortium on Blood Pressure (ICBP) GWAS (maximum n = 87,205) (refs. 

8,9). This analysis identified 19 previously unreported loci where the sentinel SNP had 

suggestive evidence for association with blood pressure (P < 1 × 10−7; Supplementary Table 

4). We performed further testing of these 19 SNPs in additional samples of up to 133,052 

individuals (48,268 East Asian, 68,456 European and 16,328 South Asian; Supplementary 

Table 5). Twelve of the 19 SNPs reached both P < 0.05 in replication testing and P < 1 × 

10−9 in the combined analysis of data from across all stages (Table 1, Supplementary Figs. 2 

and 3, and Supplementary Table 6). We set the threshold for genome-wide significance as P 

= 1 × 10−9 to provide a conservative Bonferroni correction for testing ~2.1 million SNPs 

against the 5 blood pressure phenotypes, in the 3 ancestry groups and overall.

Regional association plots for the 12 newly identified loci are shown in Figures 1–4 and 

Supplementary Figure 4; associations of the 12 sentinel SNPs with other blood pressure 

phenotypes are shown in Supplementary Figure 5 and Supplementary Table 7. There was 

little evidence for heterogeneity of effect between the ancestry groups in either the genome-

wide association or replication data. We also replicated previously reported associations 

with blood pressure at 23 genetic loci at genome-wide significance; a further 17 loci were 

associated with blood pressure phenotypes at P < 0.05 (Supplementary Fig. 6 and 

Supplementary Table 8).

In population-specific analyses, we identified two further SNPs (rs9425586 in East Asians 

and rs13395018 in Europeans) that reached P < 1 × 10−7 against a blood pressure phenotype 

in their respective discovery meta-analyses. We carried out ancestry-specific testing in the 

East Asian and European replication samples. Neither SNP reached P < 0.05 in replication 

testing or P < 1 × 10−9 in combined analysis with the discovery data (Supplementary Table 

6).
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Candidate sequence variants and genes at new loci

Taking advantage of trans-ancestry differences in linkage disequilibrium (LD), we used 

MANTRA and varLD21,22 to narrow the 99% credible SNP sets and facilitate future efforts 

to identify the causal variants underlying blood pressure variability (Supplementary Figs. 7 

and 8, and Supplementary Table 9).

Next, we searched for genetic variants at the newly identified blood pressure loci that might 

influence protein coding or gene transcription and that were in high LD (r2 >0.8) with 

sentinel blood pressure SNPs. We identified SNPs that were nonsynonymous (n = 9) or 

splicing variants (n = 2) and/or were present in regulatory regions (including transcription 

factor binding sites, promoter and enhancer regions, DNase I hypersensitivity sites, 

regulatory motifs and CpG islands; n = 825; Supplementary Table 10) (refs. 23,24).

Analysis of coding variation and gene regulatory signatures (Supplementary Tables 10 and 

11) identified 20 genes as possible candidates underlying the associations with blood 

pressure at the newly identified loci (Table 1). Current knowledge on gene function for all 

20 candidates is summarized in Supplementary Table 12.

Association of sentinel SNPs with DNA methylation

We investigated the relationships of the sentinel blood pressure SNPs with local DNA 

methylation (within 1 Mb of each SNP) in 1,904 South Asians with whole-genome 

methylation data available (peripheral blood; Illumina HumanMethylation450 BeadChip 

(450K) array; Supplementary Table 13). We found a ~2-fold enrichment for association 

between sequence variation and DNA methylation in comparison with expectations under 

the null hypothesis (P = 0.01; Supplementary Fig. 9). Twenty-eight of the 35 sentinel blood 

pressure SNPs were associated with one or more methylation markers at P < 3.8 × 10−6 (P < 

0.05 after Bonferroni correction for the 13,275 SNP-CpG association tests; Supplementary 

Table 14); the 28 leading CpG sites (the CpG sites with the lowest P value for association 

with each sentinel blood pressure SNP) are summarized in Table 2. All 28 leading CpG sites 

showed replication in further testing among 4,780 European and South Asian samples (P < 

0.05 and consistent direction of effect; Supplementary Table 15). Regional plots of DNA 

methylation are shown in Figures 1–4. There was little evidence for heterogeneity of effect 

of SNPs on methylation between Europeans and South Asians (Supplementary Fig. 10).

We found evidence of replication of the relationships of the sentinel blood pressure SNPs 

with methylation of their respective leading CpG sites in genomic DNA from cord blood (P 

= 4.0 × 10−4, binomial test for directionally consistent effects, n = 237 samples; 

Supplementary Table 16). The presence of these associations at an early stage of life, before 

substantial environmental exposure, lends support to the view that the sequence variants 

have a direct effect on DNA methylation and argues against reverse causation. We 

separately showed that association of sentinel SNPs with local DNA methylation is 

generalizable across multiple phenotypic traits and not unique to blood pressure phenotypes 

(Supplementary Fig. 11).
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Sequence variation, DNA methylation and blood pressure

We used genetic association and the concept of Mendelian randomization to test whether 

DNA methylation might contribute, at least in part, to the relationship of the sentinel SNPs 

with blood pressure. For the 28 sentinel SNPs that were associated with methylation of cis 

CpG sites (Supplementary Table 15), we quantified the three-way relationships between the 

sentinel SNPs, their leading CpG sites and blood pressure among the 6,757 Europeans and 

South Asians with DNA methylation data available (Supplementary Table 17). Across all 28 

loci, we found that the observed effects of SNPs on blood pressure were correlated with the 

effects predicted through association with methylation (r = 0.52; P = 0.005; Fig. 5). Of the 

14 sentinel SNPs with the highest predicted genetic effects (above the median for the 

distribution), 13 were directionally consistent (P = 1.2 × 10−4, sign test), with a close 

correlation between the observed and predicted effects (r = 0.72; P = 0.004). Our results 

support the view that DNA methylation may be involved in the regulatory pathway linking 

DNA sequence variants to blood pressure.

Fine mapping the association of SNPs and DNA methylation

The 450K methylation array assays ~2% of the estimated ~30 million CpG sites in the 

human genome. To further evaluate the relationship between the sentinel blood pressure 

SNPs and DNA methylation at the 19p13.3 locus near AMH, we used next-generation 

sequencing to fine map DNA methylation at all CpG sites within 1 kb on either side of the 

leading 450K CpG site in 168 samples. We successfully quantified DNA methylation at 34 

CpG sites, of which only 2 are assayed by the 450K array (Supplementary Fig. 12). The 

sentinel blood pressure SNP at the AMH locus (rs740406) had a directionally consistent 

effect on methylation at 29 of the 34 CpG sites assayed (P = 4 × 10−5, sign test; 

Supplementary Fig. 13), consistent with published data suggesting that clusters of adjacent 

CpG sites are co-regulated25,26. Of the 34 CpG sites assayed, we found that 28 had a 

positive relationship with blood pressure (P = 2 × 10−4, sign test), and 10 were associated 

with blood pressure at P < 0.05 (P = 5 × 10−7 for enrichment; Supplementary Fig. 13).

Cross-tissue patterns of DNA methylation

DNA methylation can show tissue-specific patterns that contribute to differences in 

transcriptional regulation and cellular differentiation27. We investigated the cross-tissue 

patterns of DNA methylation at the 26 leading CpG sites associated with the sentinel blood 

pressure SNPs in the present study. Using data from 7 tissue samples (including muscle, 

liver, and subcutaneous and visceral fat), we showed that DNA methylation in blood at the 

26 CpG sites was closely correlated with methylation in a wide range of tissues (Pearson 

correlation coefficient, 0.61–0.97; P = 1.2 × 10−4 to 1.3 × 10−47; Supplementary Figs. 14 

and 15). Our findings support the view that, for the CpG sites examined, methylation levels 

in blood provide a surrogate for patterns of methylation in other tissues.

Clinical relevance of our findings

We tested whether the genetic variants singly or in aggregate contribute to risk of clinical 

phenotypes associated with high blood pressure. In single-variant tests, we found that the 35 

(known and new) sentinel SNPs were enriched for variants associated with adiposity, type 2 
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diabetes, coronary heart disease and kidney function in published GWAS (P = 2.5 × 10−3 to 

1.8 × 10−11; Supplementary Table 18). We further showed that weighted genetic risk scores 

comprising known and new variants predicted increased left ventricular mass by 

electrocardiographic criteria, circulating levels of NT-proBNP (a marker of heart function), 

clinical coronary heart disease, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 

10−6; Supplementary Table 19). Our findings provide evidence that the genetic loci 

associated with blood pressure contribute to cardiovascular outcomes.

DISCUSSION

Our genome-wide association and replication study in 320,251 people identifies 12 new 

genetic loci influencing blood pressure phenotypes in 3 ancestry groups. Among the genetic 

loci and candidate genes identified, several have been implicated in other cardiovascular and 

metabolic phenotypes through genome-wide association. IGFBP3, KCNK3, PDE3A and 

PRDM6 have a role in vascular smooth muscle cell biology. PDE3A is a phosphodiesterase 

involved in cyclic GMP (cGMP) metabolism, vascular smooth muscle contraction and 

cardiovascular function28. Pharmacological inhibitors of PDE3A lower blood pressure29. 

KCNK3 is a potassium channel involved in the regulation of vascular tone; mutations in 

KCNK3 are associated with pulmonary hypertension30. PRDM6 acts as an epigenetic 

regulator of vascular smooth muscle cell phenotypic plasticity by suppressing differentiation 

and maintaining proliferative potential. Genetic variants near PRDM6 are associated with 

intracranial aneurysm31. IGFBP3 modulates the actions of insulin-like growth factors 

(IGFs), circulating hormones that influence vascular smooth muscle cell function. Serum 

levels of IGFBP3 are associated with cardiovascular disease32. We also note several 

candidate genes that are involved in renal function, a determinant of blood pressure. 

ARHGAP24 influences podocyte formation33, OSR1 encodes a transcription factor that 

influences renal mass and function34, and SLC22A7 encodes a key renal solute transporter35; 

genetic variants at TBX2 are determinants of renal function and chronic kidney disease36.

The mechanisms underlying the associations between common genetic variants and blood 

pressure are incompletely understood. The majority of the loci identified do not contain 

common or low-frequency coding variants to account for the association between the 

sentinel SNP and blood pressure. Using both the 450K methylation array and fine mapping 

through targeted bisulfite sequencing, we show that SNPs influencing blood pressure are 

associated with methylation at multiple local CpG sites and that DNA methylation is 

associated with blood pressure. Using genetic association and the concept of Mendelian 

randomization, we further show that the observed effect of SNPs on blood pressure is 

closely correlated with the effect predicted through association with methylation. The effects 

of genetic variation on methylation can be demonstrated in the newborn, in the absence of 

substantial adverse environmental exposures, further supporting a causal relationship. Our 

results suggest that DNA methylation may be involved in the regulatory pathway linking 

common genetic variants with blood pressure at some of the loci identified, consistent with 

findings from experimental models of hypertension37. We note an effect of genome-wide 

associated sentinel SNPs on DNA methylation for traits in addition to blood pressure, 

suggesting that DNA methylation might have a wider role in linking common genetic 

variation to multiple phenotypes.

Kato et al. Page 5

Nat Genet. Author manuscript; available in PMC 2016 January 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



URLs

Sequenom EpiDesigner BETA, http://www.epidesigner.com/.

ONLINE METHODS

Populations and phenotypes

Details of the participating cohorts are summarized in Supplementary Table 1 and in the 

Supplementary Note. Phenotype definitions were based on the published literature6. SBP, 

DBP, pulse pressure and MAP were continuous variables measured in millimeters of 

mercury. SBP and DBP were directly measured in millimeters of mercury, and pulse 

pressure and MAP were calculated by SBP – DBP and (2 × DBP + SBP)/3, respectively. 

SNP associations for SBP, DBP, pulse pressure and MAP were tested by linear regression 

with age and sex using an additive genetic model. For individuals being treated with blood 

pressure–lowering medication, the following adjustments to the blood pressure values were 

made before performing the regression analysis: SBP (+15), DBP (+10), pulse pressure (+5) 

and MAP (+11.667). For hypertension, logistic regression with sex as a covariate was 

applied, with cases and controls defined as follows: cases: (i) SBP ≥160 mm Hg or DBP 

≥100 mm Hg or on antihypertensive treatment and (ii) age of onset ≤65 years; controls: (i) 

SBP <130 mm Hg and DBP <85 mm Hg and not on antihypertensive treatment and (ii) age 

≥50 years). Data and sample collection by the cohorts participating in the study was 

approved by respective research ethics committees, and all research participants gave 

written consent to take part.

Genome-wide association

Genome-wide association was analyzed in a total of 99,994 subjects, of whom 31,516 were 

of East Asian ancestry, 35,352 were of European ancestry and 33,126 were of South Asian 

ancestry. Imputation was carried out using haplotypes from HapMap Phase 2. Details of 

genotyping arrays and imputation are summarized in Supplementary Table 2. Quality 

control checks included a check of the distribution of effect sizes across phenotypes and 

comparison of allele frequencies against those expected from HapMap populations. There 

were between 2,127,883 (SBP) and 2,166,286 (hypertension) SNPs for analysis after quality 

control. Genomic control inflation factors ranged from 1.01 to 1.09 in the ancestry-specific 

meta-analyses and from 1.05 to 1.12 in global analyses (Supplementary Table 3).

Genome-wide significance was inferred at P < 1 × 10−9. This conservative choice fully 

corrects for the ~10 million SNP-phenotype combinations tested, in 3 ancestry groups and 

overall, and makes no adjustment for the potential correlations between the SNPs or 

phenotypes tested. We adopted this strategy to ensure that the results reported are robust and 

to reduce the risk of spurious findings in out multi-stage trans-ancestry GWAS.

Associations of SNPs with phenotype were tested in each cohort separately in single-marker 

tests, using regression analysis and an additive genetic model. Principal components and 

other study-specific factors were included as covariates to account for population 

substructure as described in Supplementary Table 2. Test statistics from each cohort were 

then corrected for their respective genomic control inflation factor to adjust for residual 
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population substructure; the genomic control inflation factors are summarized in 

Supplementary Table 3. We then performed inverse variance meta-analysis of the results 

from the individual cohorts; meta-analysis was carried out among East Asian, European and 

South Asian populations separately. SNPs with information score <0.5 and minor allele 

frequency (MAF) <1% (weighted average across the cohorts) as well as sample size <50% 

of the maximum n for the phenotype were removed. We also removed SNPs showing 

heterogeneity of effect (Phet < 1 × 10−8) within any one of the three ancestry groups.

Finally, we carried out inverse variance meta-analyses of the results from the three ancestry 

groups. There was little evidence for inflation of test statistics at SNPs not known to be 

associated with blood pressure phenotypes, and genomic control was not applied to the final 

meta-analysis results.

Identification of candidate SNPs

We identified all common genetic variants that were in LD with one or more of the sentinel 

SNPs at r2 >0.8. LD was calculated using pooled haplotypes for (i) European and East Asian 

samples in the 1000 Genomes Project data set (March 2012 release) and (ii) 168 South 

Asians with whole-genome sequence data. We annotated the sentinel SNPs and their proxies 

for regulatory regions (promoter and enhancer histone marks, DNase I hypersensitivity, 

protein binding and regulatory motifs) with HaploRegv2 (Broad Institute)24. VEP (Variant 

Effect Predictor) was used for the identification of transcription factor binding sites and 

nonsynonymous and splicing variants23. EpiExplorer and the UCSC Genome Browser were 

used to annotate CpG islands38.

Identification of candidate genes

We considered the nearest gene and any other gene located within 10 kb of the sentinel SNP 

to be candidates for mediating the association with the blood pressure phenotype, along with 

any gene containing a SNP predicted to be nonsynonymous or affecting a splice site. We 

also examined the associations of the sentinel SNPs and their proxies with eQTL data from 

Zeller et al., consisting of data from circulating monocytes in 1,490 unrelated individuals39. 

SNPs were tested for association with the expression of nearby genes (within 1 Mb of the 

sentinel SNP; P < 1 × 10−5). Finally, for significant SNP-methylation associations, the gene 

nearest the leading CpG site was also included as a candidate.

Association between sentinel SNPs, DNA methylation and phenotype

The associations of the 36 sentinel blood pressure SNPs with DNA methylation were first 

examined among 1,904 South Asian individuals from the LOLIPOP cohort. Bisulfite 

conversion of genomic DNA was performed using the EZ DNA methylation kit according to 

the manufacturer’s instructions (Zymo Research). Methylation of genomic DNA was 

quantified using the Illumina HumanMethylation450 array according to the manufacturer’s 

instructions. To facilitate the comparison of effects between CpG sites, methylation levels 

were z-transformed for all analyses; the scale for methylation is thus ‘standard deviations’. 

Whole-genome genotyping was carried out using the Illumina 317, 610 or OmniExome 

microarray, with genomic DNA and according to the manufacturer’s instructions. SNPs and 

samples with low call rates (<98%) were excluded, as were SNPs with departure from 
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Hardy-Weinberg equilibrium (P < 1 × 10−6). We used IMPUTE2 to predict (impute) 

unmeasured genotypes, using phased haplotypes from the whole-genome sequencing of 168 

Indian Asians as a reference panel.

The association of the sentinel blood pressure SNPs with cis DNA methylation (within 1 

Mb) was tested by linear regression and an additive genetic model. We used an analytic 

strategy validated to reduce batch and other technical confounding effects in quantification 

of DNA methylation and adjusted for the white blood cell composition of blood40–42. We 

inferred statistical significance at P < 3.8 × 10−6 (Bonferroni correction for 13,275 SNP–

CpG marker tests). We identified the leading CpG site (having the lowest P value for 

association with the sentinel SNP) at each blood pressure locus. We then carried out 

replication testing of the leading SNP-CpG associations among independent samples of 

South Asians (LOLIPOP, n = 1,373) and Europeans (LOLIPOP, n = 166; LifeLines Deep, n 

= 752; RS-BIOS, n = 762; KORA, n = 1,727; Supplementary Table 13).

Next, we quantified the relationship of the 28 leading CpG sites with blood pressure 

(Supplementary Tables 15 and 17). We then calculated the predicted effect of each SNP on 

blood pressure as the product of the regression coefficients between (i) the SNP and 

methylation (n = 6,684) and (ii) methylation and blood pressure (n = 6,757). We used linear 

regression and sign tests to compare the predicted effect of a SNP on blood pressure via 

methylation with the directly observed effect of this SNP on blood pressure in genome-wide 

association (Fig. 5).

Association of methylation with gene expression

The relationship between methylation and the expression of nearest genes was investigated 

in samples from LOLIPOP (n = 1,082; 907 South Asians and 175 Europeans) and the 

EnviroGenoMarkers project, a nested case-control study of incident breast cancer and B cell 

leukemia (n = 638 Europeans)43,44.

LOLIPOP—Details of the LOLIPOP cohort and methylation analysis have been provided 

above. Gene expression analysis was performed with the Illumina HumanHT-12 v4 

BeadChip according to the manufacturer’s protocol. Background correction using negative 

controls was performed, and data were subsequently quantile normalized and log2 

transformed. Linear models were fitted with log-transformed gene expression as the 

response variable and quantile normalized with β values (methylation), age, sex, the top 24 

control probe principal components from methylation measurement and technical covariates 

related to the measurement of expression, including RNA integrity number (RIN), RNA 

extraction batch, RNA conversion batch, scanning batch, array and array position. Analyses 

were conducted separately in South Asians and Europeans, followed by inverse variance–

weighted meta-analysis. Calculations were performed using R, version 3.0.1.

EnviroGenoMarkers—Methylation and gene expression were quantified in the baseline 

blood samples collected 1–17 years before disease onset. Transcriptomic profiles were 

obtained using the Agilent 4x44K Whole Human Genome microarray and subjected to 

extensive quality control procedures45. DNA methylation profiles were obtained using the 

Illumina Infinium HumanMethylation450 BeadChip according to the manufacturer’s 
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protocol. Bisulfite conversion was carried out using the Zymo EZ DNA Methylation kit. 

Probes that had missing values in more than 20% of the samples were excluded. We used 

linear regression to determine the association between methylation and gene transcription.

Enrichment of reported sentinel SNPs for association with DNA methylation

SNPs reported to be associated with phenotype were retrieved from the National Human 

Genome Research Institute (NHGRI) GWAS catalog. We considered studies with a sample 

size greater than 1,000 and retained SNPs with association P < 5 × 10−8. For simplicity, we 

removed data for Crohn’s disease and ulcerative colitis (both represented by inflammatory 

bowel disease) and obesity (represented by body mass index (BMI)). To account for biases 

due to LD, SNPs were pruned for each trait on the basis of a 1-Mb flanking window (by 

consecutively selecting the SNP with the lowest P value and removing any variant within 1 

Mb). Traits were then ranked by the number of significant associations, and the top 20 traits 

were tested for enrichment with methylation quantitative trait locus (methQTL) SNPs. For 

this purpose, we derived 1 million sets of matched background SNPs for each trait. These 

background SNPs were chosen randomly but had properties matched to the associated SNPs 

(MAF ±2%, distance to gene ±10 kb, CpGs in cis ±200 kb). The proportion of cis 

methQTLs among the associated SNPs was then compared to the proportion among each of 

the 1 million sets of background SNPs, thereby deriving an empirical P value.

Cross-tissue methylation

Publicly available data (GSE48472) were downloaded from the Gene Expression Omnibus 

(GEO)46. Briefly, the data set consisted of 41 samples from blood, liver, muscle, pancreas, 

subcutaneous fat, omentum and spleen analyzed on the 450K methylation array. Data from 

the 28 CpG sites of interest were extracted and plotted using the heatmap.2 function in the 

gplots library with R. Mean methylation levels for each CpG site across all samples within 

each tissue type were used to test for pairwise correlation between tissue types.

Relationship of sentinel SNPs with methylation in cord blood

We tested the relationship of sentinel SNPs with methylation for the 28 SNP-CpG pairs of 

interest in cord blood to investigate whether reverse causation might account for the 

observed associations between SNPs and methylation. This analysis was conducted in the 

GUSTO (Growing Up in Singapore Toward Healthy Outcomes) study47. Extracted DNA 

from cord blood (n = 237 samples) was genotyped using the Illumina OmniExpress + exome 

array, and DNA methylation profiling was performed using the Infinium 

HumanMethylation450 BeadChip. Data were processed as described48. Both data sets have 

been described previously and are deposited in GEO under accessions GSE53816 and 

GSE54445 (ref. 49). Genotype data were imputed with reference to HapMap 2 East Asian 

populations. SNPs with MAF <1% in GUSTO and CpGs that failed quality control were 

excluded from further analysis. Linear regression was used to quantify SNP-CpG 

associations, adjusting for sex.
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Targeted resequencing for regional methylation

The 450K array assays <2% of the estimated ~30 million CpG sites in the human genome. 

To better describe the patterns of regional methylation, we carried out resequencing of the 

AMH locus in 168 samples. We used sequence capture and next-generation sequencing to 

assay 34 predicted CpG sites within 1 kb of the sentinel methylation marker at the AMH 

locus (chr. 19, 2,250,061–2,252,061). Primers were designed using Sequenom EpiDesigner 

BETA. Target DNA enrichment was carried out using the Fluidigm 48.48 Access Array IFC 

system, followed by PCR to attach sequence-specific adaptors and sample barcodes. Pooled 

sequencing was performed using the Illumina MiSeq platform (300-bp paired-end runs). We 

then used Burrows-Wheeler Aligner to map the directional, paired-end Illumina sequencing 

reads to the reference genome (hg19 build) and quantified methylation from the frequencies 

of converted and unconverted cytosine residues observed in reads mapped to each CpG site.

Fine mapping

To take advantage of any variation in LD structure between ancestry groups, we used 

MANTRA and varLD for further trans-ancestry fine mapping21,22. MANTRA, a Bayesian 

approach, allows for heterogeneity in effect sizes between ancestry or ethnic groups, which 

arises as a result of underlying differences in LD patterns but with a shared underlying 

causal variant across diverse populations that cannot be accommodated in fixed-effects 

meta-analysis. At each locus, 99% credible SNP sets were also constructed, which can be 

interpreted in a similar way to confidence intervals in a frequentist statistical 

framework21,50.

Genetic risk scores

We calculated weighted genetic risk scores for each of the 5 blood pressure phenotypes, 

using all 35 sentinel SNPs reaching genome-wide significance or the 12 sentinel SNPs from 

the newly identified genetic loci; this yielded 10 genetic risk scores per person. Each score 

was calculated as the sum of the effect allele counts weighted by β coefficients for 

association with the respective phenotype. To facilitate comparisons between genetic risk 

scores, each score was then standardized. We examined the relationships between genetic 

risk scores and phenotypes relevant to blood pressure in three cohorts—LOLIPOP, 

LifeLines and PREVEND—using regression analysis, including age and sex as covariates. 

Results were combined across cohorts by inverse variance meta-analysis where necessary. 

Where possible, we also used the in silico approach from T. Johnson for comparison8.
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Figure 1. 
Regional plots for the three newly identified loci associated with SBP. Associations of SNPs 

with SBP in the trans-ancestry GWAS (blue markers; n = 99,994) and of sentinel SNP with 

methylation at nearby CpG sites (red markers; n = 2,664) are shown. The identities of the 

sentinel SNP and most closely associated CpG site are provided; correlations between 

markers are shown in Supplementary Figure 4.
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Figure 2. 
Regional plots for the two newly identified loci associated with DBP. Associations of SNPs 

with DBP in the trans-ancestry GWAS (blue markers; n = 99,994) and of sentinel SNPs with 

methylation at nearby CpG sites (red markers; n = 2,664) are shown. The identities of the 

sentinel SNP and most closely associated CpG site are provided; correlations between 

markers are shown in Supplementary Figure 4.
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Figure 3. 
Regional plots for the four newly identified loci associated with pulse pressure. Associations 

of SNPs with pulse pressure in the trans-ancestry GWAS (blue markers; n = 99,994) and of 

sentinel SNPs with methylation at nearby CpG sites (red markers; n = 2,664) are shown. The 

identities of the sentinel SNP and most closely associated CpG site are provided; 

correlations between SNPs and between methylation markers are shown in Supplementary 

Figure 4.

Kato et al. Page 29

Nat Genet. Author manuscript; available in PMC 2016 January 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. 
Regional plots for the three newly identified loci associated with MAP. Associations of 

SNPs with MAP in the trans-ancestry GWAS (blue markers; n = 99,994) and of sentinel 

SNPs with methylation at nearby CpG sites (red markers; n = 2,664) are shown. The 

identities of the sentinel SNP and most closely associated CpG site are provided; 

correlations between markers are shown in Supplementary Figure 4.
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Figure 5. 
DNA methylation as a potential mediator of the relationship between sentinel SNPs and 

blood pressure at the loci reaching genome-wide significance in our study. Results are 

shown for the 28 sentinel SNPs that are associated with methylation at P < 0.05 after 

Bonferroni correction for multiple tests. Predicted effects on blood pressure are based on the 

relationship of sentinel SNPs with methylation and the relationship of methylation with 

blood pressure (BP); observed effects represent the direct relationship between the sentinel 

SNPs and blood pressure (discovery phenotype). The P value is for the correlation of the 

observed versus predicted effects (solid line).
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