54 research outputs found

    Peroxisome proliferators-activated alpha agonist treatment ameliorates hepatic damage in rats with obstructive jaundice: an experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferators-activated receptor alpha (PPARα) activation modulates cholesterol metabolism and suppresses bile acid synthesis. This study aims to evaluate the effect of short-term administration of fenofibrate, a PPARα agonist, on proinflammatory cytokines, apoptosis, and hepatocellular damage in cholestasis.</p> <p>Methods</p> <p>Forty male Wistar rats were randomly divided into four groups: I = sham operated, II = bile duct ligation (BDL), III = BDL + vehicle (gum Arabic), IV = BDL + fenofibrate (100 mg/kg/day). All rats were sacrificed on 7<sup>th </sup>day after obtaining blood samples and liver tissue. Total bilirubin, aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), gamma-glutamyl transferase, (GGT), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1 ÎČ), and total bile acid (TBA) in serum, and liver damage scores; portal inflammation, necrosis, bile duct number, in liver tissue were evaluated. Apoptosis in liver was also assessed by immunohistochemical staining.</p> <p>Results</p> <p>Fenofibrate administration significantly reduced serum total bilirubin, AST, ALT, ALP, and GGT, TNF-α, IL-1 ÎČ levels, and TBA (<it>P </it>< 0.01). Hepatic portal inflammation, hepatic necrosis, number of the bile ducts and apoptosis in rats with BDL were more prominent than the sham-operated animals (<it>P </it>< 0.01). PPARα induction improved all histopathologic parameters (<it>P </it>< 0.01), except for the number of the bile duct, which was markedly increased by fenofibrate therapy (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Short-term administration of fenofibrate to the BDL rats exerts beneficial effects on hepatocellular damage and apoptosis.</p

    Progress in identifying epigenetic mechanisms of xenobiotic-induced non-genotoxic carcinogenesis

    Get PDF
    Determining the human relevance of structurally and functionally distinct non-genotoxic carcinogenic compounds that induce a diverse range of tissue-, gender-, strain- and species-specific tumours in animals remains a major challenge for toxicologists. Nevertheless, elucidating mechanisms of xenobiotic-induced tumours in animals can provide industry, environmental and regulatory scientists with valuable tools for cancer hazard identification and risk assessment. The discovery that aberrant epigenetic events frequently accompany genetic mutations in human cancers has stimulated efforts to deploy integrated epigenomic and transcriptomic profiling of xenobiotic-induced non-genotoxic carcinogenesis (NGC) in animal models, enabling enhanced mechanistic interpretation and novel early biomarker discovery. Recent advances in the mapping and functional characterization of mammalian tissue-specific epigenomes also provides new opportunities to characterize the cross-strain/-species chromatin architecture of non-genotoxic carcinogen effector genes and to predict their potential for modulation by xenobiotics in human tissue. Since xenobiotic-induced perturbations of gene regulation are intimately associated with the underlying DNA sequence, there is a need to integrate the impact of genotype on susceptibility to NGC. Furthermore, the potential association of xenobiotic target modulation with tumorigenic phenotypes can be assessed using genetic models and cancer genome resources. Finally, we discuss how epigenomic profiling may be used to critically assess the comparability and validity of cellular NGC models versus in vivo-derived tissue samples and some of key challenges associated with incorporating epigenetic mechanisms and biomarkers into cancer risk assessment

    Risk to human health related to the presence of perfluoroalkyl substances in food

    Get PDF
    Acknowledgements: The Panel wishes to thank the following for their support provided to this scientific output as Hearing experts: Klaus Abraham, Esben Budtz-JĂžrgensen, Tony Fletcher, Philippe Grandjean, Hans Mielke and Hans Rumke and EFSA staff members: Davide Arcella, Marco Binaglia, Petra Gergelova, Elena Rovesti and Marijke Schutte. The Panel wishes to acknowledge all European competent institutions, Member State bodies and other organisations that provided data for this scientific output. The Panel would also like to thank the following authors and co-authors for providing additional information in relation to their respective studies: Berit Granum, Margie M Peden-Adams, Thomas Webster.Peer reviewedPublisher PD
    • 

    corecore