15 research outputs found

    News Framing In Bangladesh, India And British Media: Bangladesh Parliamentary Election 2018

    Get PDF
    The Bangladesh parliamentary election of 2018 was a significant political event in the South Asian region, and the news was covered across the world. After the abolition of the provision of parliamentary election under the non-partisan caretaker government from the constitution of Bangladesh, it was the first election in Bangladesh in which all opposition parties participated under a party government. This study examines how media from three different countries framed the issues of the election. These systematic and quantitative content analyses of three newspapers and online resources from the countries Bangladesh, India, and Britain examined how the media framed their election-related news, as well as differences across the countries\u27 newspaper coverage. The study finds that election conspiracy, intimidation, and conflict were the dominant frames throughout the coverage on Bangladeshi and British media. Indian media overlooked intimidation and conflict news but emphasized game and economic frames. The results indicate that when media covers a national election in another country, they give priority to the national policy of the country. In addition, the nationality of journalists also plays a significant role in the framing process

    Developing shelf-stable Microbiota Directed Complementary Food (MDCF) prototypes for malnourished children: Study protocol for a randomized, single-blinded, clinical study

    Get PDF
    BACKGROUND: Childhood undernutrition is a major public health concern that needs special attention to achieve 2025 global nutrition targets. Moderate acute malnutrition (MAM), manifest as wasting (low weight-for-height), affects 33 million children under 5, yet there are currently no global guidelines for its treatment. We recently performed a randomized-controlled clinical study of a microbiota-directed complementary food formulation (MDCF-2) in 12-18-month-old Bangladeshi children with MAM. The results revealed that MDCF-2, freshly prepared each day, produced a significantly greater improvement in ponderal growth than a standard ready-to-use supplementary food (RUSF), an effect that is associated with repair of the disrupted gut microbial community development that occurs in children with MAM. To test the generalizability of these results in acutely malnourished children at other sites, there is a pressing need for a packaged, shelf-stable, organoleptically-acceptable formulation that is bioequivalent to MDCF-2. This report describes the protocol for a clinical study to evaluate candidate formulations designed to meet these criteria. METHODS: A randomized single-blind study will be conducted in 8-12-month-old Bangladeshi children with MAM to compare the efficacy of alternative shelf-stable MDCF prototypes versus the current MDCF-2 formulation that is produced fresh each day. V4-16S rDNA amplicon and shotgun sequencing datasets will be generated from faecal DNA samples collected from each child enrolled in each group prior to, during, and after treatment to determine the abundances of MDCF-2-responsive bacterial taxa. Efficacy will be assessed by quantifying the change in representation of MDCF-2-responsive gut bacterial taxa after 4-weeks of treatment with freshly prepared MDCF-2 compared to their changes in abundance after treatment with the prototype MDCFs. Equivalence will be defined as the absence of a statistically significant difference, after 4-weeks of treatment, in the representation of faecal bacterial taxa associated with the response to MDCF-2 in participants receiving a test MDCF. DISCUSSION: This trial aims to establish acceptability and equivalence with respect to microbiota repair, of scalable, shelf-stable formulations of MDCF-2 in 8-12-month-old Bangladeshi children with moderate acute malnutrition. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05094024). The trial has been registered before starting enrolment on 23 October 2021

    Age and sex-specific disability-free life expectancy in urban and rural settings of Bangladesh

    Get PDF
    Background Disability-free life expectancy (DFLE) has been used to gain a better understanding of the population’s quality of life. Objectives The authors aimed to estimate age and sex-specific disability-free life expectancy (DFLE) for urban and rural areas of Bangladesh, as well as to investigate the differences in DFLE between males and females of urban and rural areas. Methods Data from the Bangladesh Sample Vital Statistics-2016 and the Bangladesh Household Income and Expenditure Survey (HIES)-2016 were used to calculate the disability-free life expectancy (DFLE) of urban and rural males and females in Bangladesh in 2016. The DFLE was calculated using the Sullivan method. Results With only a few exceptions, rural areas have higher mortality and disability rates than urban areas. For both males and females, statistically significant differences in DFLE were reported between urban and rural areas between the ages of birth and 39 years. In comparison to rural males and females, urban males and females had a longer life expectancy (LE), a longer disability-free life expectancy, and a higher share of life without disability. Conclusion This study illuminates stark urban–rural disparities in LE and DFLE, especially among individuals aged < 1–39 years. Gender dynamics reveal longer life expectancy but shorter disability-free life expectancy for Bangladeshi women compared to men, emphasizing the need for targeted interventions to address these pronounced health inequalities

    Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2\ub75th percentile and 100 as the 97\ub75th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59\ub74 (IQR 35\ub74–67\ub73), ranging from a low of 11\ub76 (95% uncertainty interval 9\ub76–14\ub70) to a high of 84\ub79 (83\ub71–86\ub77). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030

    Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of 'leaving no one behind', it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990-2017, projected indicators to 2030, and analysed global attainment. METHODS: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0-100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODErn), to generate cause fractions and cause specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NC Ds) comprised the greatest fraction of deaths, contributing to 73.4% (95% uncertainty interval [UI] 72.5-74.1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 186% (17.9-19.6), and injuries 8.0% (7.7-8.2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22.7% (21.5-23.9), representing an additional 7.61 million (7. 20-8.01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7.9% (7.08.8). The number of deaths for CMNN causes decreased by 222% (20.0-24.0) and the death rate by 31.8% (30.1-33.3). Total deaths from injuries increased by 2.3% (0-5-4-0) between 2007 and 2017, and the death rate from injuries decreased by 13.7% (12.2-15.1) to 57.9 deaths (55.9-59.2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000-289 000) globally in 2007 to 352 000 (334 000-363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118.0% (88.8-148.6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36.4% (32.2-40.6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33.6% (31.2-36.1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respirator}, infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990 neonatal disorders, lower respiratory infections, and diarrhoeal diseases were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. METHODS: The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries-Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised

    Next Generation Communication Technologies: Wireless Mesh Network For Rural Connectivity

    No full text
    Abstract-The opportunities and challenges of traditional communication technologies in the area of rural communication calls for a change in perspective and usual trends of wire line and wireless connectivity. In the quest to improve rural communication with the urban market, use of smart hand-held devices and easy-to-deploy wireless connectivity is catalytic according to our findings. To eradicate digital divide, we have presented a holistic approach to overcome the challenges of language barrier and information asymmetry. This paper provides an insight of $100 tablets, an interactive hand-held communication device, which allows low-literate farmers to share their information onto the network. These smart communication devices stay connected to the global network through the easy deployment of wireless mesh network (WMN) in a rural area. QoS constraints are imposed in the WMN setup and significant observation has been made regarding spectrum resource utilization at every hop by achieving certain level of cognition at the user end

    LLDNet: A Lightweight Lane Detection Approach for Autonomous Cars Using Deep Learning

    No full text
    Lane detection plays a vital role in making the idea of the autonomous car a reality. Traditional lane detection methods need extensive hand-crafted features and post-processing techniques, which make the models specific feature-oriented, and susceptible to instability for the variations on road scenes. In recent years, Deep Learning (DL) models, especially Convolutional Neural Network (CNN) models have been proposed and utilized to perform pixel-level lane segmentation. However, most of the methods focus on achieving high accuracy while considering structured roads and good weather conditions and do not put emphasis on testing their models on defected roads, especially ones with blurry lane lines, no lane lines, and cracked pavements, which are predominant in the real world. Moreover, many of these CNN-based models have complex structures and require high-end systems to operate, which makes them quite unsuitable for being implemented in embedded devices. Considering these shortcomings, in this paper, we have introduced a novel CNN model named LLDNet based on an encoder&ndash;decoder architecture that is lightweight and has been tested in adverse weather as well as road conditions. A channel attention and spatial attention module are integrated into the designed architecture to refine the feature maps for achieving outstanding results with a lower number of parameters. We have used a hybrid dataset to train our model, which was created by combining two separate datasets, and have compared the model with a few state-of-the-art encoder&ndash;decoder architectures. Numerical results on the utilized dataset show that our model surpasses the compared methods in terms of dice coefficient, IoU, and the size of the models. Moreover, we carried out extensive experiments on the videos of different roads in Bangladesh. The visualization results exhibit that our model can detect the lanes accurately in both structured and defected roads and adverse weather conditions. Experimental results elicit that our designed method is capable of detecting lanes accurately and is ready for practical implementation
    corecore