330 research outputs found

    Molecular Inventories and Chemical Evolution of Low-mass Protostellar Envelopes

    Get PDF
    This paper presents the first substantial study of the chemistry of the envelopes around a sample of 18 low-mass pre- and protostellar objects for which physical properties have previously been derived from radiative transfer modeling of their dust continuum emission. Single-dish line observations of 24 transitions of 9 molecular species (not counting isotopes) including HCO+, N2H+, CS, SO, SO2, HCN, HNC, HC3N and CN are reported. The line intensities are used to constrain the molecular abundances by comparison to Monte Carlo radiative transfer modeling of the line strengths. An empirical chemical network is constructed on the basis of correlations between the abundances of various species. For example, it is seen that the HCO+ and CO abundances are linearly correlated, both increasing with decreasing envelope mass. Species such as CS, SO and HCN show no trend with envelope mass. In particular no trend is seen between ``evolutionary stage'' of the objects and the abundances of the main sulfur- or nitrogen-containing species. Among the nitrogen-bearing species abundances of CN, HNC and HC3N are found to be closely correlated, which can be understood from considerations of the chemical network. The CS/SO abundance ratio is found to correlate with the abundances of CN and HC3N, which may reflect a dependence on the atomic carbon abundance. An anti-correlation is found between the deuteration of HCO+ and HCN, reflecting different temperature dependences for gas-phase deuteration mechanisms. The abundances are compared to other protostellar environments. In particular it is found that the abundances in the cold outer envelope of the previously studied class 0 protostar IRAS16293-2422 are in good agreement with the average abundances for the presented sample of class 0 objects.Comment: Accepted for publication in A&A. 29 pages, 23 figures. Abstract abridge

    Smc5/6: a link between DNA repair and unidirectional replication?

    Get PDF
    Of the three structural maintenance of chromosome (SMC) complexes, two directly regulate chromosome dynamics. The third, Smc5/6, functions mainly in homologous recombination and in completing DNA replication. The literature suggests that Smc5/6 coordinates DNA repair, in part through post-translational modification of uncharacterized target proteins that can dictate their subcellular localization, and that Smc5/6 also functions to establish DNA-damage-dependent cohesion. A nucleolar-specific Smc5/6 function has been proposed because Smc5/6 yeast mutants display penetrant phenotypes of ribosomal DNA (rDNA) instability. rDNA repeats are replicated unidirectionally. Here, we propose that unidirectional replication, combined with global Smc5/6 functions, can explain the apparent rDNA specificity

    Maritime Aerosol Network as a component of Aerosol Robotic Network

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): D06204, doi:10.1029/2008JD011257.The paper presents the current status of the Maritime Aerosol Network (MAN), which has been developed as a component of the Aerosol Robotic Network (AERONET). MAN deploys Microtops handheld Sun photometers and utilizes the calibration procedure and data processing (Version 2) traceable to AERONET. A web site dedicated to the MAN activity is described. A brief historical perspective is given to aerosol optical depth (AOD) measurements over the oceans. A short summary of the existing data, collected on board ships of opportunity during the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project is presented. Globally averaged oceanic aerosol optical depth (derived from island-based AERONET measurements) at 500 nm is ∼0.11 and Angstrom parameter (computed within spectral range 440–870 nm) is calculated to be ∼0.6. First results from the cruises contributing to the Maritime Aerosol Network are shown. MAN ship-based aerosol optical depth compares well to simultaneous island and near-coastal AERONET site AOD.The work of Tymon Zielinski was supported by Polish national grant AERONET59

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Direct Observation of the Myosin Va Recovery Stroke That Contributes to Unidirectional Stepping along Actin

    Get PDF
    Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed “strokes”; the “power stroke” is the force-generating swinging of the myosin light chain–binding “neck” domain relative to the motor domain “head” while bound to actin; the “recovery stroke” is the necessary initial motion that primes, or “cocks,” myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a “hand over hand” mechanism in which the trailing head detaches and steps forward ∼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s) attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ∼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥5 kBT of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery stroke contributes to unidirectional stepping of myosin Va

    Conserved Regulation of p53 Network Dosage by MicroRNA–125b Occurs through Evolving miRNA–Target Gene Pairs

    Get PDF
    MicroRNAs regulate networks of genes to orchestrate cellular functions. MiR-125b, the vertebrate homologue of the Caenorhabditis elegans microRNA lin-4, has been implicated in the regulation of neural and hematopoietic stem cell homeostasis, analogous to how lin-4 regulates stem cells in C. elegans. Depending on the cell context, miR-125b has been proposed to regulate both apoptosis and proliferation. Because the p53 network is a central regulator of both apoptosis and proliferation, the dual roles of miR-125b raise the question of what genes in the p53 network might be regulated by miR-125b. By using a gain- and loss-of-function screen for miR-125b targets in humans, mice, and zebrafish and by validating these targets with the luciferase assay and a novel miRNA pull-down assay, we demonstrate that miR-125b directly represses 20 novel targets in the p53 network. These targets include both apoptosis regulators like Bak1, Igfbp3, Itch, Puma, Prkra, Tp53inp1, Tp53, Zac1, and also cell-cycle regulators like cyclin C, Cdc25c, Cdkn2c, Edn1, Ppp1ca, Sel1l, in the p53 network. We found that, although each miRNA–target pair was seldom conserved, miR-125b regulation of the p53 pathway is conserved at the network level. Our results lead us to propose that miR-125b buffers and fine-tunes p53 network activity by regulating the dose of both proliferative and apoptotic regulators, with implications for tissue stem cell homeostasis and oncogenesis

    Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    Get PDF
    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment
    corecore