163 research outputs found

    Numerical simulation and experimental investigation of diesel fuel reforming over a Pt/CeO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> catalyst

    Get PDF
    In order to benefit from a realistic hydrogen production device equipped on a vehicle, issues with the effects of the process parameters on H2 and CO yield need to be resolved. In this study, a reduced mechanism for n-heptane (as a surrogate diesel) reforming over a Pt/CeO2-Al2O3 catalyst is adopted to investigate the effects of the process parameters on H2 and CO yield, and the preferred process parameters are concluded. In addition, the comparison of reforming bench tests of diesel fuel and n-heptane under typical diesel engine operating conditions is conducted. The n-heptane reforming simulation results show that the maximum H2 and CO yield moves toward unity with the decreased GHSV and increased reaction temperature, and the GHSV of 10,000 1/h, O2/C ratio of 0.6 and reaction temperature of 500 &deg;C is preferable. The contrast experiments reveal that the change trend of H2 and CO yield displays consistence, although the difference of the average H2 and CO yield results is obvious. The characteristics of n-heptane reforming can represent H2 and CO yield features of diesel fuel reforming at typical reaction temperatures in a way

    A gauss function based approach for unbalanced ontology matching

    Full text link
    Ontology matching, aiming to obtain semantic correspon-dences between two ontologies, has played a key role in data exchange, data integration and metadata management. Among numerous matching scenarios, especially the appli-cations cross multiple domains, we observe an important problem, denoted as unbalanced ontology matching which requires to find the matches between an ontology describing a local domain knowledge and another ontology covering the information over multiple domains, is not well studied in the community. In this paper, we propose a novel Gauss Function based ontology matching approach to deal with this unbalanced ontology matching issue. Given a relative lightweight on-tology which represents the local domain knowledge, we ex-tract a“similar ” sub-ontology from the corresponding heavy-weight ontology and then carry out the matching procedure between this lightweight ontology and the newly generated sub-ontology. The sub-ontology generation is based on the influences between concepts in the heavyweight ontology. We propose a Gauss Function based method to properly cal-culate the influence values between concepts. In addition, we perform an extensive experiment to verify the effective-ness and efficiency of our proposed approach by using OAEI 2007 tasks. Experimental results clearly demonstrate that our solution outperforms the existing methods in terms of precision, recall and elapsed time

    TeacherLM: Teaching to Fish Rather Than Giving the Fish, Language Modeling Likewise

    Full text link
    Large Language Models (LLMs) exhibit impressive reasoning and data augmentation capabilities in various NLP tasks. However, what about small models? In this work, we propose TeacherLM-7.1B, capable of annotating relevant fundamentals, chain of thought, and common mistakes for most NLP samples, which makes annotation more than just an answer, thus allowing other models to learn "why" instead of just "what". The TeacherLM-7.1B model achieved a zero-shot score of 52.3 on MMLU, surpassing most models with over 100B parameters. Even more remarkable is its data augmentation ability. Based on TeacherLM-7.1B, we augmented 58 NLP datasets and taught various student models with different parameters from OPT and BLOOM series in a multi-task setting. The experimental results indicate that the data augmentation provided by TeacherLM has brought significant benefits. We will release the TeacherLM series of models and augmented datasets as open-source.Comment: 5 figures, 15 page

    Enhanced Electron Correlation and Significantly Suppressed Thermal Conductivity in Dirac Nodal-Line Metal Nanowires by Chemical Doping

    Get PDF
    Enhancing electron correlation in a weakly interacting topological system has great potential to promote correlated topological states of matter with extraordinary quantum properties. Here, the enhancement of electron correlation in a prototypical topological metal, namely iridium dioxide (IrO2), via doping with 3d transition metal vanadium is demonstrated. Single-crystalline vanadium-doped IrO2 nanowires are synthesized through chemical vapor deposition where the nanowire yield and morphology are improved by creating rough surfaces on substrates. Vanadium doping leads to a dramatic decrease in Raman intensity without notable peak broadening, signifying the enhancement of electron correlation. The enhanced electron correlation is further evidenced by transport studies where the electrical resistivity is greatly increased and follows an unusual √ T dependence on the temperature (T). The lattice thermal conductivity is suppressed by an order of magnitude via doping even at room temperature where phonon-impurity scattering becomes less important. Density functional theory calculations suggest that the remarkable reduction of thermal conductivity arises from the complex phonon dispersion and reduced energy gap between phonon branches, which greatly enhances phase space for phonon–phonon Umklapp scattering. This work demonstrates a unique system combining 3d and 5d transition metals in isostructural materials to enrich the system with various types of interactions

    Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma

    Get PDF
    BACKGROUND: MicroRNAs are stable and easy to detect in plasma. The plasma levels of microRNAs are often changed in disease conditions, including cancer. This makes circulating microRNAs a novel class of biomarkers for cancer diagnosis. Analyses of online microRNA data base revealed that expression level of three microRNAs, microRNA-24 (miR-24), microRNA-320a (miR-320a), and microRNA-423-5p (miR-423-5p) were down-regulated in colorectal cancer (CRC). However, whether the plasma level of these three microRNAs can serve as biomarkers for CRC diagnosis and prognosis is not determined. METHODS: Plasma samples from 223 patients with colorectal related diseases (111 cancer carcinoma, 59 adenoma, 24 colorectal polyps and 29 inflammatory bowel disease) and 130 healthy controls were collected and subjected to reverse transcription-quantitative real time PCR (RT-qPCR) analyses for the three microRNAs. In addition, plasma samples from 43 patients were collected before and after surgical treatment for the same RT-qPCR analyses. RESULTS: The concentrations of plasma miR-24, miR-320a and miR-423-5p were all decreased in patients with CRC and benign lesions (polyps and adenoma) compared with healthy controls, but increased in inflammatory bowel disease (IBD). The sensitivity of miR-24, miR-320a and miR-423-5p for early stage of CRC were 77.78 %, 90.74 %, and 88.89 %, respectively. Moreover, the plasma concentration of the three microRNAs was increased in patients after the surgery who had clinical improvement. CONCLUSIONS: The plasma levels of miR-24, miR-320a, and miR-423-5p have promising potential to serve as novel biomarkers for CRC detection, especially for early stage of CRC, which are superior to the currently used clinical biomarkers for CRC detection, such as CEA and CA19-9. Further efforts to develop the three microRNAs as biomarkers for early CRC diagnosis and prediction of surgical treatment outcomes are warrant. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13046-015-0198-6) contains supplementary material, which is available to authorized users

    Tubeless video-assisted thoracic surgery for pulmonary ground-glass nodules: expert consensus and protocol (Guangzhou)

    Get PDF

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore