53 research outputs found

    Rapid diagnosis of lyme disease: Flagellin gene-based nested polymerase chain reaction for identification of causative Borrelia species

    Get PDF
    AbstractObjective: Each of Borrelia burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii has characteristic restriction sites in its flagellin gene. The authors focused on this gene and developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis for rapid diagnosis of Lyme disease.Methods: External and internal primer sets were designed for nested PCR to amplify an approximately 580 by fragment of the flagellin gene that includes species-specific restriction sites. DNA extracted from tissue samples of mice and humans were used as templates for PCR. The amplicons obtained were digested with HapII, HhaI, CelII HincII, or Ddel endonuclease.Results: In mice experimentally infected with each of B. burgdorferi sensu stricto, B. garinii, and B. afzelii, borrelial DNA was detected irrespective of differences in the causative species. However, RFLP of the amplicons was able to identify the species. Skin biopsy samples from 11 Japanese patients with erythema migrans were subjected to both PCR and culture tests. Borrelial infections were detected in seven cases (64%) by PCR and eight cases (73%) by culture. All PCR-positive samples were also positive by culture. The causative species in human infections was easily identified as B. garinii by RFLP analysis of the amplicons.Conclusion: The nested PCR-RFLP system appears to be an easy and reliable diagnostic tool for the detection and species identification of borreliae in human cutaneous biopsies

    microRNA-203 suppresses invasion and epithelial-mesenchymal transition induction via targeting NUAK1 in head and neck cancer

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) has a high capacity for invasion. To identify microRNAs (miRNAs) that regulate HNSCC invasion, we compared miRNA expression profiles between a parent HNSCC cell line and a highly invasive clone. The miR-200 family and miR-203 were downregulated in the clone. Here we focused on the role of miR-203 in invasion and epithelial-mesenchymal transition (EMT) induction in HNSCC. miR-203 was downregulated during EMT induction. Moreover, ectopic overexpression of miR-203 suppressed the invasion and induced mesenchymal-epithelial transition (MET) in HNSCC cells. Interestingly, we identified NUAK family SNF1-like kinase 1 (NUAK1) as a novel target gene of miR-203 by cyclopedic analysis using anti-Ago2 antibody. Increased expression of NUAK1 was observed during EMT induction, and ectopic expression of miR-203 delayed EMT induction by suppressing NUAK1 expression. Moreover, NUAK1 overexpression promoted the invasion of HNSCC cells. Importantly, NUAK1 expression was well correlated with poor differentiation, invasiveness, and lymph node metastasis in HNSCC cases. Overall, miR-203 has a tumor-suppressing role in invasion and EMT induction by targeting NUAK1 in HNSCC, suggesting miR-203 as a potential new diagnostic and therapeutic target for the treatment of HNSCC

    microRNA-203 suppresses invasion and epithelial-mesenchymal transition induction via targeting NUAK1 in head and neck cancer

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) has a high capacity for invasion. To identify microRNAs (miRNAs) that regulate HNSCC invasion, we compared miRNA expression profiles between a parent HNSCC cell line and a highly invasive clone. The miR-200 family and miR-203 were downregulated in the clone. Here we focused on the role of miR-203 in invasion and epithelial-mesenchymal transition (EMT) induction in HNSCC. miR-203 was downregulated during EMT induction. Moreover, ectopic overexpression of miR-203 suppressed the invasion and induced mesenchymal-epithelial transition (MET) in HNSCC cells. Interestingly, we identified NUAK family SNF1-like kinase 1 (NUAK1) as a novel target gene of miR-203 by cyclopedic analysis using anti-Ago2 antibody. Increased expression of NUAK1 was observed during EMT induction, and ectopic expression of miR-203 delayed EMT induction by suppressing NUAK1 expression. Moreover, NUAK1 overexpression promoted the invasion of HNSCC cells. Importantly, NUAK1 expression was well correlated with poor differentiation, invasiveness, and lymph node metastasis in HNSCC cases. Overall, miR-203 has a tumor-suppressing role in invasion and EMT induction by targeting NUAK1 in HNSCC, suggesting miR-203 as a potential new diagnostic and therapeutic target for the treatment of HNSCC

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore