224 research outputs found

    Non-Markovian decay beyond the Fermi Golden Rule: Survival Collapse of the polarization in spin chains

    Full text link
    The decay of a local spin excitation in an inhomogeneous spin chain is evaluated exactly: I) It starts quadratically up to a spreading time t_{S}. II) It follows an exponential behavior governed by a self-consistent Fermi Golden Rule. III) At longer times, the exponential is overrun by an inverse power law describing return processes governed by quantum diffusion. At this last transition time t_{R} a survival collapse becomes possible, bringing the polarization down by several orders of magnitude. We identify this strongly destructive interference as an antiresonance in the time domain. These general phenomena are suitable for observation through an NMR experiment.Comment: corrected versio

    The effect of water deficit and excess copper on proline metabolism in Nicotiana benthamiana

    Get PDF
    Fluctuation in proline content is a widespread phenomenon among plants in response to heavy metal stress. To distinguish between the participation of water deficit and copper on changes in proline metabolism, potted plants and floating leaf discs of tobacco were subjected to CuSO4 treatments. The application of copper increased the proline content in the leaves concomitantly with decreased leaf relative water content and increased abscisic acid (ABA) content in the potted plant. Excess copper increased the expression of two proline synthesis genes, pyrroline-5-carboxylate synthetase (P5CS) and ornithine aminotransferase (OAT) and suppressed proline catabolism gene, proline dehydrogenase (PDH). However, in the experiment with tobacco leaf discs floating on CuSO4 solutions, the excess copper decreased proline content and suppressed the expression of the P5CS, OAT and PDH genes. Therefore, proline accumulation in the potted tobacco plants treated with excess Cu treatment might not be the consequence of the increased copper content in tobacco leaves but rather by the accompanied decrease in water content and/or increased ABA content

    Determining the upper limit of Gamma_{ee} for the Y(4260)

    Full text link
    By fitting the R values between 3.7 and 5.0 GeV measured by the BES collaboration, the upper limit of the electron width of the newly discovered resonance Y(4260) is determined to be 580 eV at 90% C.L. Together with the BABAR measurement on the product of Gamma_{ee} and BR(Y(4260) --> pi+pi- J/psi), this implies a large decay width of Y(4260) --> pi+pi- J/psi final states.Comment: 8 pages, 4 figure

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    InBO3 and ScBO3 at high pressures: an ab initio study of elastic and thermodynamic properties

    Full text link
    We have theoretically investigated the elastic properties of calcite-type orthoborates ABO(3) (A= Sc and In) at high pressure by means of ab initio total-energy calculations. From the elastic stiffness coefficients, we have obtained the elastic moduli (B, G and E), Poisson's ratio (nu), B/G ratio, universal elastic anisotropy index (A(U)), Vickers hardness, and sound wave velocities for both orthoborates. Our simulations show that both borates are more resistive to volume compression than to shear deformation (B > G). Both compounds are ductile and become more ductile, with an increasing elastic anisotropy, as pressure increases. We have also calculated some thermodynamic properties, like Debye temperature and minimum thermal conductivity. Finally, we have evaluated the theoretical mechanical stability of both borates at high hydrostatic pressures. It has been found that the calcite-type structure of InBO3 and ScBO3 becomes mechanically unstable at pressures beyond 56.2 and 57.7 GPa, respectively. (C) 2016 Elsevier Ltd. All rights reserved.This study is supported by the Spanish MICINN projects MAT2013-46649-C4-2-P/3-P and MAT2015-71070-REDC. H.M.O., A.M., and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. J.A.S. acknowledges Juan de la Cierva fellowship program for financial support.Gomis, O.; Ortiz, HM.; Sans Tresserras, JÁ.; Manjón Herrera, FJ.; Santamaría-Pérez, D.; Rodríguez-Hernández, P.; Muñoz, A. (2016). InBO3 and ScBO3 at high pressures: an ab initio study of elastic and thermodynamic properties. Journal of Physics and Chemistry of Solids. 98:198-208. https://doi.org/10.1016/j.jpcs.2016.07.002S1982089

    An efficient strategy for evaluating new non-invasive screening tests for colorectal cancer: the guiding principles.

    Get PDF
    New screening tests for colorectal cancer (CRC) are rapidly emerging. Conducting trials with mortality reduction as the end point supporting their adoption is challenging. We re-examined the principles underlying evaluation of new non-invasive tests in view of technological developments and identification of new biomarkers. A formal consensus approach involving a multidisciplinary expert panel revised eight previously established principles. Twelve newly stated principles emerged. Effectiveness of a new test can be evaluated by comparison with a proven comparator non-invasive test. The faecal immunochemical test is now considered the appropriate comparator, while colonoscopy remains the diagnostic standard. For a new test to be able to meet differing screening goals and regulatory requirements, flexibility to adjust its positivity threshold is desirable. A rigorous and efficient four-phased approach is proposed, commencing with small studies assessing the test's ability to discriminate between CRC and non-cancer states (phase I), followed by prospective estimation of accuracy across the continuum of neoplastic lesions in neoplasia-enriched populations (phase II). If these show promise, a provisional test positivity threshold is set before evaluation in typical screening populations. Phase III prospective studies determine single round intention-to-screen programme outcomes and confirm the test positivity threshold. Phase IV studies involve evaluation over repeated screening rounds with monitoring for missed lesions. Phases III and IV findings will provide the real-world data required to model test impact on CRC mortality and incidence. New non-invasive tests can be efficiently evaluated by a rigorous phased comparative approach, generating data from unbiased populations that inform predictions of their health impact

    Relating self and other in Chinese and Western thought

    Get PDF
    Recent debates in International Relations seek to decolonise the discipline by focusing on relationality between self and other. This article examines the possibilities for preserving a particular type of otherness: ‘radical otherness’ or ‘alterity’. Such otherness can provide a bulwark against domination and colonialism: there is always something truly other which cannot be assimilated. However, two problems arise. First, if otherness is truly inaccessible, how can self relate to it? Does otherness undermine relationality? Second, can we talk about otherness without making it the same? Is the very naming of otherness a new form of domination? This article draws out and explores the possibilities for radical otherness in Sinophone and Anglophone relational theorising. It addresses the difficulties presented by the need for a sense of radical otherness on the one hand, and the seeming impossibility of either detecting it, or relating to it, on the other. By constructing a typology of four accounts of otherness, it finds that the identification and preservation of radical otherness poses significant problems for relationality. Radical otherness makes relationality between self and other impossible, but without radical otherness there is a danger of domination and assimilation. This is common to both Sinophone and Anglophone endeavours
    corecore