1,939 research outputs found

    Current Solid Mechanics Research

    Get PDF

    Cavitation instabilities between fibres in a metal matrix composite

    Get PDF

    Effect of void cluster on ductile failure evolution

    Get PDF

    Micromechanics of creep fracture: simulation of intergranular crack growth

    Get PDF
    A computational model is presented to analyze intergranular creep crack growth in a polycrystalline aggregate in a discrete manner and based directly on the underlying physical micromechanisms. A crack tip process zone is used in which grains and their grain boundaries are represented discretely, while the surrounding undamaged material is described as a continuum. The constitutive description of the grain boundaries accounts for the relevant physical mechanisms, i.e. viscous grain boundary sliding, the nucleation and growth of grain boundary cavities, and microcracking by the coalescence of cavities. Discrete propagation of the main crack occurs by linking up of neighbouring facet microcracks. Assuming small-scale damage conditions, the model is used to simulate the initial stages of crack growth under C* controlled, model I loading conditions. Initially sharp or blunted cracks are considered. The emphasis in this study is on the effect of the grain microstructure on crack growth.

    Numerical modelling in non linear fracture mechanics

    Get PDF
    Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence,and a model for intergranular creep failure with diffusive growth of grain boundary cavities leadingto micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damagemechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesivezone models to represent the fracture process is discussed

    Multiscale characterisation of the mechanical properties of austenitic stainless steel joints

    Get PDF
    A multiscale investigation was pursued in order to obtain the strain distribution and evolution during tensile testing both at the macro- and micro-scale for a diffusion bonded 316L stainless steel. The samples were designed for the purpose to demonstrate that the bond line properties were equal or better than the parent material in a sample geometry that was extracted from a larger component. The macroscopic stress-strain curves were coupled to the strain distributions using a camera-based 2D – Digital Image Correlation system. Results showed significant amount of plastic deformation predominantly concentrated in shear bands which were extended over a large region, crossing through the joint area. Yet it was not possible to be certain whether the joint has shown significant plastic deformation. In order to obtain the joints’ mechanical response in more detail, in situ micromechanical testing was conducted in the SEM chamber that allowed areas of 1x1 mm2 and 50x50 mm2 to be investigated. The size of the welded region was rather small to be accurately captured from the camera based DIC system. Therefore a microscale investigation was pursued where the samples were tested within an SEM chamber. Low magnification SEM imaging was utilised in order to cover a viewing area of 1 mm×1 mm while high magnification SEM imaging was employed to provide evidence of the occurrence of plastic deformation within the joint, at an area of just 50 μm×50 μm. The strain evolution over the microstructural level, within the joint and at the base material was obtained. The local strains were highly non-homogeneous through the whole test. Final failure occurred approximately 0.2 mm away from the joint. Large local strains were measured within the joint region, while SEM imaging showed that plastic deformation occurs via the formation of strong slip bands, followed by the activation of additional slip systems upon further plastic deformation which end up in additional slip bands to form on the surface. Plastic deformation occurred by slip and twinning mechanisms. Upon necking, significant out of plane deformations and slip deformation mechanisms were observed which suggested that plastic deformation was also happening at the last stages of damage evolution for the specific alloy. This was also evident from the large difference between the 600 MPa UTS stress value and the low stress values before final failure (which in many cases was below 30 MPa)

    Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study

    Full text link
    The effect of stress-triaxiality on growth of a void in a three dimensional single-crystal face-centered-cubic (FCC) lattice has been studied. Molecular dynamics (MD) simulations using an embedded-atom (EAM) potential for copper have been performed at room temperature and using strain controlling with high strain rates ranging from 10^7/sec to 10^10/sec. Strain-rates of these magnitudes can be studied experimentally, e.g. using shock waves induced by laser ablation. Void growth has been simulated in three different conditions, namely uniaxial, biaxial, and triaxial expansion. The response of the system in the three cases have been compared in terms of the void growth rate, the detailed void shape evolution, and the stress-strain behavior including the development of plastic strain. Also macroscopic observables as plastic work and porosity have been computed from the atomistic level. The stress thresholds for void growth are found to be comparable with spall strength values determined by dynamic fracture experiments. The conventional macroscopic assumption that the mean plastic strain results from the growth of the void is validated. The evolution of the system in the uniaxial case is found to exhibit four different regimes: elastic expansion; plastic yielding, when the mean stress is nearly constant, but the stress-triaxiality increases rapidly together with exponential growth of the void; saturation of the stress-triaxiality; and finally the failure.Comment: 35 figures, which are small (and blurry) due to the space limitations; submitted (with original figures) to Physical Review B. Final versio

    Micromechanics of intergranular creep failure under cyclic loading

    Get PDF
    This paper is concerned with a micromechanical investigation of intergranular creep failure caused by grain boundary cavitation under strain-controlled cyclic loading conditions. Numerical unit cell analyses are carried out for a planar polycrystal model in which the grain material and the grain boundaries are modelled individually. The model incorporates power-law creep of the grains, viscous grain boundary sliding between grains as well as the nucleation and growth of grain boundary cavities until they coalesce and form microcracks. Study of a limiting case with a facet-size microcrack reveals a relatively simple phenomenology under either balanced loading, slow-fast loading or balanced loading with a hold period at constant tensile stress. Next, a (non-dimensionalized) parametric study is carried out which focusses on the effect of the diffusive cavity growth rate relative to the overall creep rate, and the effects of cavity nucleation and grain boundary sliding. The model takes account of the build up of residual stresses during cycling, and it turns out that this, in general, gives rise to a rather complex phenomenology, but some cases are identified which approach the simple microcrack behaviour. The analyses provide some new understanding that helps to explain the sometimes peculiar behaviour under balanced cyclic creep.
    • …
    corecore