38 research outputs found

    Astrometry and geodesy with radio interferometry: experiments, models, results

    Full text link
    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys., Vol. 70, Oct. 199

    The mucosal immune system and its regulation by autophagy

    Get PDF
    The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a “self-eating” survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders

    CeO2 nanoparticles attenuate airway mucus secretion induced by TiO2 nanoparticles

    No full text
    Nanotoxicity studies associated with various nanoparticles (NPs) have attracted intense research interest due to the broader applications of nanoparticles in our daily lives. The exposure of nanoparticles can lead to hypersecretion and accumulation of airway mucus which are closely associated with many respiratory diseases. Titanium dioxide (TiO2), one of the PM10 components, is a major NP that is widely utilized in many commercial products. Our previous study established the connection between induced airway mucus secretion and TiO2 NPs. However, the countermeasure to reduce the harmful effects of TiO2 NPs, especially airway mucus secretion, remains unexplored. One of the potential candidates to reduce airway mucus secretion is cerium oxide (CeO2) NPs. It has been reported that CeO2 NPs can protect cells by diminishing ROS and inflammatory responses. Herein, our study shows that CeO2 NPs are able to reduce cytosolic Ca2+ changes and mitochondrial damage caused by TiO2 NPs. Our results provide the evidence that hypersecretion of mucus and apoptosis progression induced by TiO2 NPs can be attenuated by CeO2 NPs. This study highlights the potential capacity of CeO2 NPs as a supplementary material for TiO2 NPs applications in the future
    corecore