149 research outputs found

    Ability of the EEOC to Litigate for Compensation on Behalf of a Specific Individual Despite Automatic Stay

    Get PDF
    (Exceprt) Section 362 of title 11 of the United States Code (the “Bankruptcy Code”) provides for an automatic stay, i.e., a “statutory injunction against efforts outside [a] bankruptcy to collect debts from a debtor under the protections of the Bankruptcy Code.” However, pursuant to section 362(b)(4) of the Bankruptcy Code, a governmental agency may commence or continue an action against a debtor to enforce the agency’s police or regulatory power despite the automatic stay (hereinafter, the “§362(b)(4) Exception”). For the exception to apply, the action of the governmental agency must “protect the public health and safety” as opposed to “a pecuniary interest in property of the debtor.” An agency’s attempt to enforce a money judgment is generally stayed and not subject to the §362(b)(4) Exception. However, whether a governmental agency is permitted to litigate for entry of a money judgment on behalf of a specific individual, despite an automatic stay, remains unclear. Government agencies will often try to evoke the §362(b)(4) Exception in connection with achieving their ultimate objectives. By way of illustration, the U.S. Equal Employment Opportunity Commission (“EEOC”) “is responsible for enforcing federal laws that make it illegal to discriminate against an . . . employee . . . because of the persons race, color, religion, sex . . . national origin, age . . . , disability or genetic information.” The EEOC retains the ability to file suit against employers who discriminate against employees and remedies include both compensatory and punitive damages depending on the specific facts of the case. To this end, the EEOC typically relies on the §362(b)(4) Exception. This memorandum analyzes the issue in two parts. Part 1 addresses Congress’s intent when drafting the §362(b)(4) Exception as well as various court interpretations that followed. Part 2 contemplates the question of whether the EEOC acts within the scope of its regulatory power when litigating for monetary judgments on behalf of specific individuals

    Unusually low thermal conductivity of gallium nitride nanowires

    Get PDF
    We report measurements of thermal conductivity Îș on individual gallium nitride nanowires (GaN NWs) with diameters ranging from 97 to 181 nm grown by thermal chemical vapor deposition. We observed unexpectedly small kappa values, in the range of 13–19 W/m K at 300 K, with very weak diameter dependence. We also observe unusual power law Îș~Tn behavior with n=1.8 at low temperature. Electron-energy-loss-spectroscopy measurements indicate Si and O concentrations in the ranges of 0.1–1 and 0.01–0.1 at. %, respectively. Based on extensive numerical calculations, we conclude that both the unexpectedly low Îș and the T1.8 dependence are caused by unusually large mass-difference scattering, primarily from Si impurities. Our analysis also suggests that mass-difference scattering rates are significantly enhanced by the reduced phonon group velocity in nanoscale systems. Planar defects running the length of the NW, previously characterized in detail, may also play a role in limiting the phonon mean free path

    An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity

    Get PDF
    Recent studies of SWNT/polymer nanocomposites identify the large interfacial thermal resistance at nanotube/nanotube junctions as a primary cause for the only modest increases in thermal conductivity relative to the polymer matrix. To reduce this interfacial thermal resistance, we prepared a freestanding nanotube framework by removing the polymer matrix from a 1 wt % SWNT/PMMA composite by nitrogen gasification and then infiltrated it with epoxy resin and cured. The SWNT/epoxy composite made by this infiltration method has a micron-scale, bicontinuous morphology and much improved thermal conductivity (220% relative to epoxy) due to the more effective heat transfer within the nanotube-rich phase. By applying a linear mixing rule to the bicontinuous composite, we conclude that even at high loadings the nanotube framework more effectively transports phonons than well-dispersed SWNT bundles. Contrary to the widely accepted approaches, these findings suggest that better thermal and electrical conductivities can be accomplished via heterogeneous distributions of SWNT in polymer matrices

    Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes

    Get PDF
    We report structure-property correlations in single wall carbon nanotube (SWNT) fibers, among electrical, thermal and chemical parameters with respect to stretch-induced preferential SWNT alignment along the fiber axis. Purified HiPco tubes are dispersed with the aid of an anionic surfactant and coagulated in the co-flowing stream of an adsorbing polymer. The fibers are then dried, rewetted under tensile load and redried to improve the alignment. Complete removal of the polymer was assured by annealing in hydrogen at 1000oC. The degree of alignment was determined by x-ray scattering from individual fibers using a 2-dimensional detector. The half width at half maximum (HWHM) describing the axially symmetric distribution of SWNT axes decreases linearly from 27.5o in the initial extruded fiber to 14.5o after stretching by 80%. The electrical resistivity ρ at 300 K decreases overall by a factor ~4 with stretching, for both as-spun composite and polymer-free annealed fibers. However, the temperature dependence ρ(T) is markedly different for the two, implying different electron transport mechanisms with and without the polymer. Thermal conductivity also improves with increasing alignment, while the absolute values are limited by the disordered network of finite length tubes and bundles. Comparisons are made with results from similar fibers spun from oleum, and with magnetically aligned buckypapers

    Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties

    Get PDF
    Thick films of single wall carbon nanotubes (SWNT) exhibiting in-plane preferred orientation have been produced by filter deposition from suspension in strong magnetic fields. We characterize the field-induced alignment with x-ray fiber diagrams and polarized Raman scattering, using a model which includes a completely unaligned fraction. We correlate the texture parameters with resistivity and thermal conductivity measured parallel and perpendicular to the alignment direction. Results obtained with 7 and 26 Tesla fields are compared. We find no significant field dependence of the distribution width, while the aligned fraction is slightly greater at the higher field. Anisotropy in both transport properties is modest, with ratios in the range 5–9, consistent with the measured texture parameters assuming a simple model of rigid rod conductors. We suggest that further enhancements in anisotropic properties will require optimizing the filter deposition process rather than larger magnetic fields. We show that both x-ray and Raman data are required for a complete texture analysis of oriented SWNT materials

    Single Wall Carbon Nanotube Fibers Extruded from Super-Acid Suspensions: Preferred Orientation, Electrical and Thermal Transport

    Get PDF
    Fibers of single wall carbon nanotubes extruded from super-acid suspensions exhibit preferred orientation along their axes. We characterize the alignment by x-ray fiber diagrams and polarized Raman scattering, using a model which allows for a completely unaligned fraction. This fraction ranges from 0.17 to 0.05±0.02 for three fibers extruded under different conditions, with corresponding Gaussian full widths at half-maximum (FWHM) from 64o to 44o±2o. FWHM, aligned fraction, electrical and thermal transport all improve with decreasing extrusion orifice diameter. Resistivity, thermoelectric power and resonant-enhanced Raman scattering indicate that the neat fibers are strongly p-doped; the lowest observed ρ is 0.25mΩcm at 300 K. High temperature annealing increases ρ by more than 1 order of magnitude and restores the Raman resonance associated with low-energy van Hove transitions, without affecting the nanotube alignment

    A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel

    Get PDF
    A small, highly sensitive, and electromagnetic interference (EMI)-immune refractive index (RI) sensor based on the Fabry-Perot (FP) interferometer is presented. The sensor’s FP cavity was fabricated by aligning two metal-deposited, single-mode optical fiber endfaces inside a microchannel on a silicon chip. The mirrors on the fiber endfaces were made of thermal-deposited metal films, which provided the high finesse necessary to produce a highly sensitive sensor. Microelectromechanical systems (MEMS) fabrication techniques, specifically photolithography and deep dry etching, were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 ÎŒm. The RI change within the FP cavity was determined by demodulating the transmission spectrum phase shift. The sensitivity and finesse of the transmission spectrum were controlled by adjusting the cavity length and the thickness of the deposited metal. Our experimental results showed that the sensor’s sensitivity was 665.90 nm/RIU (RI Unit), and the limit of detection was 6 × 10−6 RIU. Using MEMS fabrication techniques to fabricate these sensors could make high yield mass production a real possibility. Multiple sensors could be integrated on a single small silicon chip to simultaneously measure RI, temperature, and biomolecule targets

    Baseline Characteristics and Disease Phenotype In Inflammatory Bowel Disease Results of A Paediatric IBD Cohort.

    Get PDF
    BACKGROUND AND AIMS Predicting short-term relapses and long-term prognosis is of outmost importance in paediatric inflammatory bowel disease. Our aim was to investigate the short-term disease outcome and medication during the first year in a paediatric incident cohort from Hungary. In addition, association laboratory markers and disease activity indices with short-term disease outcome and medication were analysed. METHODS From January 1, 2008 to December 31, 2010 demographic data and clinical characteristics of newly diagnosed paediatric inflammatory bowel disease patients younger than 18 years of age were prospectively recorded. RESULTS A total of 420 patients were identified [Crohn's disease: 266; ulcerative colitis 124]. Initially, 48% (124/256) of Crohn's disease patients had moderate to severe disease (PCDAI>31), and this rate decreased to 2.1% at one-year follow-up. Proportion of ulcerative colitis patients with moderate to severe disease (PUCAI>35) at diagnosis declined from 57.5% (69/120) to 6.8% at one-year follow-up. Terminal ileal involvement correlated with higher initial CRP (p = 0.021) and initial PCDAI (p = 0.026). In ulcerative colitis, elevated CRP (p = 0.002) was associated with disease extension. CRP and PCDAI at diagnosis were associated with the need for immunomodulators at one year in children with Crohn's disease. Initial CRP was also associated with the need for immunomodulators in patients with ulcerative colitis at one-year follow-up. CONCLUSIONS At diagnosis half of the patients with inflammatory bowel disease had moderate to severe disease and this rate decreased to less than 10% after one year. Initial CRP and PCDAI were related to the need for aggressive therapy in Crohn's disease
    • 

    corecore