40 research outputs found

    Shale heavy metal isotope records of low environmental O2 between two Archean Oxidation Events

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ostrander, C. M., Kendall, B., Gordon, G. W., Nielsen, S. G., Zheng, W., & Anbar, A. D. Shale heavy metal isotope records of low environmental O2 between two Archean Oxidation Events. Frontiers in Earth Science, 10, (2022): 833609, https://doi.org/10.3389/feart.2022.833609.Evidence of molecular oxygen (O2) accumulation at Earth’s surface during the Archean (4.0–2.5 billion years ago, or Ga) seems to increase in its abundance and compelling nature toward the end of the eon, during the runup to the Great Oxidation Event. Yet, many details of this late-Archean O2 story remain under-constrained, such as the extent, tempo, and location of O2 accumulation. Here, we present a detailed Fe, Tl, and U isotope study of shales from a continuous sedimentary sequence deposited between ∼2.6 and ∼2.5 Ga and recovered from the Pilbara Craton of Western Australia (the Wittenoom and Mt. Sylvia formations preserved in drill core ABDP9). We find a progressive decrease in bulk-shale Fe isotope compositions moving up core (as low as δ56Fe = –0.78 ± 0.08‰; 2SD) accompanied by invariant authigenic Tl isotope compositions (average ε205TlA = –2.0 ± 0.6; 2SD) and bulk-shale U isotope compositions (average δ238U = –0.30 ± 0.05‰; 2SD) that are both not appreciably different from crustal rocks or bulk silicate Earth. While there are multiple possible interpretations of the decreasing δ56Fe values, many, to include the most compelling, invoke strictly anaerobic processes. The invariant and near-crustal ε205TlA and δ238U values point even more strongly to this interpretation, requiring reducing to only mildly oxidizing conditions over ten-million-year timescales in the late-Archean. For the atmosphere, our results permit either homogenous and low O2 partial pressures (between 10−6.3 and 10−6 present atmospheric level) or heterogeneous and spatially restricted O2 accumulation nearest the sites of O2 production. For the ocean, our results permit minimal penetration of O2 in marine sediments over large areas of the seafloor, at most sufficient for the burial of Fe oxide minerals but insufficient for the burial of Mn oxide minerals. The persistently low background O2 levels implied by our dataset between ∼2.6 and ∼2.5 Ga contrast with the timeframes immediately before and after, where strong evidence is presented for transient Archean Oxidation Events. Viewed in this broader context, our data support the emerging narrative that Earth’s initial oxygenation was a dynamic process that unfolded in fits-and-starts over many hundreds-of-millions of years.This work was supported financially by the NSF Frontiers in Earth System Dynamics program award NSF EAR-1338810 (AA), a Woods Hole Oceanographic Institution Postdoctoral Scholarship (CO), a NSERC Discovery Grant (RGPIN-435930) and the Canada Research Chair program (BK), and a NASA Exobiology award 80NSSC20K0615 (SN)

    Redox conditions across the Cambrian–Ordovician boundary: Elemental and isotopic signatures retained in the GSSP carbonates

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.palaeo.2015.09.014 © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Lime mudstone samples (rhythmites) were collected at high resolution from outcrops of the Cambrian–Ordovician GSSP boundary section at Green Point (western Newfoundland, Canada). The sequence (~45 mthick) consists of slope carbonates with alternating shale and siltstone interbeds, and it spans the boundary located between the Martin Point and Broom Point members of the Green Point Formation (Cow Head Group). Samples were extracted frommicritic rhythmites by microdrilling and subsequently screened using petrographic and geochemical criteria to evaluate their degree of preservation. Although the δ13Corg profile (−29.7 to−25.6‰ VPDB) shows insignificant variations, the TOC values (0.1 to 4.1%) exhibit a generally upward decreasing trend. A negative δ13Ccarb excursion, reflecting a sealevel rise, marks a geochemical anomaly that correlates with an increase in the N contents (0 to 2.9%) of organic matter and the δ15Norg values (−0.6 to +6.0‰), which suggests a change to more reducing oceanic conditions. The U contents vary from 0.1 to 3.0 ppm and the δ238U values (−0.97 to −0.18‰) generally decrease with the negative δ13Ccarb excursion. The U isotopic variations suggest a widespread increase in reducing conditions associated with sealevel rise during this interval. The investigated sedimentary rocks were slope carbonateswhere dysoxic conditions likely dominated throughout the entire section. Therefore, the changes in the TOC, N, δ15Norg, and δ238U profiles across the boundary are not as sharp as would be expected by a local change from oxic shallow-water to dysoxic/anoxic deep-water settings.Petroleum Exploration Enhancement Program (PEEP) NSERC Discovery Grant || (RGPIN-435930) Carlsberg Foundation || (2013_01_0664

    Devonian Rise in Atmospheric Oxygen Correlated to the Radiations of Terrestrial Plants and Large Predatory Fish

    Get PDF
    The evolution of Earth’s biota is intimately linked to the oxygenation of the oceans and atmosphere. We use the isotopic composition and concentration of molybdenum (Mo) in sedimentary rocks to explore this relationship. Our results indicate two episodes of global ocean oxygenation. The first coincides with the emergence of the Ediacaran fauna, including large, motile bilaterian animals, ca. 550-560 million year ago (Ma), reinforcing previous geochemical indications that Earth surface oxygenation facilitated this radiation. The second, perhaps larger, oxygenation took place around 400 Ma, well after the initial rise of animals and, therefore, suggesting that early metazoans evolved in a relatively low oxygen environment. This later oxygenation correlates with the diversification of vascular plants, which likely contributed to increased oxygenation through the enhanced burial of organic carbon in sediments. It also correlates with a pronounced radiation of large predatory fish, animals with high oxygen demand. We thereby couple the redox history of the atmosphere and oceans to major events in animal evolution.Earth and Planetary SciencesOrganismic and Evolutionary Biolog

    Marine redox conditions during deposition of Late Ordovician and Early Silurian organic-rich mudrocks in the Siljan ring district, central Sweden

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.chemgeo.2017.03.015 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseThe Late Ordovician Period witnessed the second largest mass extinction in the Phanerozoic Eon and the Hirnantian glaciation. To infer ocean redox conditions across the Ordovician-Silurian transition, we measured the U (as δ238U relative to standard CRM145 = 0‰) and Mo (as δ98Mo relative to standard NIST SRM 3134 = +0.25‰) isotope compositions of 26 organic-rich mudrock samples from the Late Ordovician (Katian) Fjäcka Shale and the Early Silurian (Aeronian-Telychian) Kallholn Formation (Siljan ring district, Sweden). The magnitude of Re,Mo, and U enrichments, ReEF/MoEF and UEF/MoEF ratios, and sedimentary Fe speciation point to locally euxinic bottom water conditions during deposition of the Fjäcka Shale. The same proxies suggest that black shales of the Kallholn Formation were deposited under transiently euxinic conditions with the chemocline situated near the sediment-water interface, whereas gray shales stratigraphically equivalent to the upper Kallholn Formation were deposited from oxygenated bottom waters. These observations are consistent with higher δ98Mo and δ238U in the Fjäcka Shale compared with the Kallholn Formation. Because the Fjäcka Shalewas deposited from persistently euxinic bottomwaters, theMo and U isotope compositions from these rocks can be used to estimate the extent of global ocean euxinia and ocean anoxia (euxinic plus ferruginous conditions), respectively. Elevated MoEF and Mo/TOC ratios in the euxinic Fjäcka Shale suggest no more than moderate basin restriction from the open ocean as well as non-quantitative removal ofMo from the euxinic bottom waters, thus pointing toMo isotope fractionation between seawater and the euxinic sediments. Hence, we infer that even the highest δ98Mo(+1.28‰) preserved in the Fjäcka Shale is only aminimum estimate for theMoisotope composition of coeval global seawater. Correcting for seawater-sediment Mo isotope fractionation, the δ98Mo of late Katian seawater may have been +1.4–2.1‰, which corresponds to ~10–70% Mo removal into the euxinic sink. The average authigenic δ238U of the Fjäcka Shale is −0.05‰ to +0.02‰ after correcting for a range of possible detrital δ238U values, thus yielding an overall average of ~0‰. Taking into account isotope fractionation during U removal to euxinic sediments, we infer that late Katian seawater δ238U was about−0.85‰to−0.60‰. A steady-state U isotope mass balance model reveals that 46–63% of riverine U input was removed in anoxic settings. Based on the Mo and U isotope data, we infer that euxinic and anoxic waters may have covered b1% and at least 5% (potentially tens of percent) of the total seafloor area during the late Katian, respectively, based on previously publishedmodels that relate themagnitude of Mo and U burial fluxes to the areal extent of euxinic and anoxic seafloor. By comparison, only 0.21–0.35% and b1% of the total seafloor area was covered by anoxic waters today and during the Cenozoic, respectively. The difference between the estimated extent of ocean anoxia (euxinic plus ferruginous) and ocean euxinia points to an appreciable extent of ferruginous water masses during the late Katian. Integration of our data with previous studies thus supports the hypothesis that ocean oxygenation intensified during the subsequent Hirnantian glaciation (when seawater δ98Motemporarily reached values similar to today). Hence, environmental stresses related to glaciation, not an expansion of ocean anoxia,may have triggered the first phase of the Hirnantianmass extinction.NSERC Discovery grant || (RGPIN-435930) Chinese 973 program || (grant No. 2013CB955704) NSFC || (grant No. 41172030

    Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.gca.2015.02.025 © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/To improve estimates of the extent of ocean oxygenation during the late Ediacaran Period, we measured the U and Mo isotope compositions of euxinic (anoxic and sulfidic) organic-rich mudrocks (ORM) of Member IV, upper Doushantuo Formation, South China. The average d238U of most samples is 0.24 ± 0.16& (2SD; relative to standard CRM145), which is slightly higher than the average d238U of 0.02 ± 0.12& for restricted Black Sea (deep-water Unit I) euxinic sediments and is similar to a modeled d238U value of 0.2& for open ocean euxinic sediments in the modern well-oxygenated oceans. Because 238U is preferentially removed to euxinic sediments compared to 235U, expanded ocean anoxia will deplete seawater of 238U relative to 235U, ultimately leading to deposition of ORM with low d238U. Hence, the high d238U of Member IV ORM points to a common occurrence of extensive ocean oxygenation ca. 560 to 551 Myr ago. The Mo isotope composition of sediments deposited from strongly euxinic bottom waters ([H2S]aq >11 lM) either directly records the global seawater Mo isotope composition (if Mo removal from deep waters is quantitative) or represents a minimum value for seawater (if Mo removal is not quantitative). Near the top of Member IV, d98Mo approaches the modern seawater value of 2.34 ± 0.10&. High d98Mo points to widespread ocean oxygenation because the preferential removal of isotopically light Mo to sediments occurs to a greater extent in O2-rich compared to O2-deficient marine environments. However, the d98Mo value for most Member IV ORM is near 0&(relative to standard NIST SRM 3134 = 0.25&), suggesting extensive anoxia. The low d98Mo is at odds with the high Mo concentrations of Member IV ORM, which suggest a large seawater Mo inventory in well-oxygenated oceans, and the high d238U. Hence, we propose that the low d98Mo of most Member IV ORM was fractionated from contemporaneous seawater. Possible mechanisms driving this isotope fractionation include: (1) inadequate dissolved sulfide for quantitative thiomolybdate formation and capture of a seawater-like d98Mo signature in sediments or (2) delivery of isotopically light Mo to sediments via a particulate Fe–Mn oxyhydroxide shuttle. A compilation of Mo isotope data from euxinic ORM suggests that there were transient episodes of extensive ocean oxygenation that break up intervals of less oxygenated oceans during late Neoproterozoic and early Paleozoic time. Hence, Member IV does not capture irreversible deep ocean oxygenation. Instead, complex ocean redox variations likely marked the transition from O2-deficient Proterozoic oceans to widely oxygenated later Phanerozoic oceans.National Science Foundation NASA Astrobiology Institute Agouron Institute Natural Sciences and Engineering Research Council of Canada Discovery Gran

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis:a randomised, double-blind, placebo-controlled, phase 2b trial

    Get PDF
    Background: Lung delivery of plasmid DNA encoding the CFTR gene complexed with a cationic liposome is a potential treatment option for patients with cystic fibrosis. We aimed to assess the efficacy of non-viral CFTR gene therapy in patients with cystic fibrosis. Methods: We did this randomised, double-blind, placebo-controlled, phase 2b trial in two cystic fibrosis centres with patients recruited from 18 sites in the UK. Patients (aged ≥12 years) with a forced expiratory volume in 1 s (FEV1) of 50–90% predicted and any combination of CFTR mutations, were randomly assigned, via a computer-based randomisation system, to receive 5 mL of either nebulised pGM169/GL67A gene–liposome complex or 0·9% saline (placebo) every 28 days (plus or minus 5 days) for 1 year. Randomisation was stratified by % predicted FEV1 (<70 vs ≥70%), age (<18 vs ≥18 years), inclusion in the mechanistic substudy, and dosing site (London or Edinburgh). Participants and investigators were masked to treatment allocation. The primary endpoint was the relative change in % predicted FEV1. The primary analysis was per protocol. This trial is registered with ClinicalTrials.gov, number NCT01621867. Findings: Between June 12, 2012, and June 24, 2013, we randomly assigned 140 patients to receive placebo (n=62) or pGM169/GL67A (n=78), of whom 116 (83%) patients comprised the per-protocol population. We noted a significant, albeit modest, treatment effect in the pGM169/GL67A group versus placebo at 12 months' follow-up (3·7%, 95% CI 0·1–7·3; p=0·046). This outcome was associated with a stabilisation of lung function in the pGM169/GL67A group compared with a decline in the placebo group. We recorded no significant difference in treatment-attributable adverse events between groups. Interpretation: Monthly application of the pGM169/GL67A gene therapy formulation was associated with a significant, albeit modest, benefit in FEV1 compared with placebo at 1 year, indicating a stabilisation of lung function in the treatment group. Further improvements in efficacy and consistency of response to the current formulation are needed before gene therapy is suitable for clinical care; however, our findings should also encourage the rapid introduction of more potent gene transfer vectors into early phase trials
    corecore