132 research outputs found

    Distinct patterns in the diurnal and seasonal variability in four components of soil respiration in a temperate forest under free-air CO<sub>2</sub> enrichment

    Get PDF
    Soil respiration (RS) is a major flux in the global carbon (C) cycle. Responses of RS to changing environmental conditions may exert a strong control on the residence time of C in terrestrial ecosystems and in turn influence the atmospheric concentration of greenhouse gases. Soil respiration consists of several components oxidizing soil C from different pools, age and chemistry. The mechanisms underlying the temporal variability of RS components are poorly understood. In this study, we used the long-term whole-ecosystem 13C tracer at the Duke Forest Free Air CO2 Enrichment site to separate forest RS into its autotrophic (RR) and heterotrophic components (RH). The contribution of RH to RS was further partitioned into litter decomposition (RL), and decomposition of soil organic matter (RSOM) of two age classes – up to 8 yr old and SOM older than 8 yr. Soil respiration was generally dominated by RSOM during the growing season (44% of daytime RS), especially at night. The contribution of heterotrophic respiration (RSOM and RL) to RS was not constant, indicating that the seasonal variability in RR alone cannot explain seasonal variation in RS. Although there was no diurnal variability in RS, there were significant compensatory differences in the contribution of individual RS components to daytime and nighttime rates. The average contribution of RSOM to RS was greater at night (54%) than during the day (44%). The average contribution of RR to total RS was ~30% during the day and ~34% during the night. In contrast, RL constituted 26% of RS during the day and only 12% at night. About 95% of the decomposition of soil C older than 8 yr (Rpre-tr) originated from RSOM and showed more pronounced and consistent diurnal variability than any other RS component; nighttime rates were on average 29% higher than daytime rates. In contrast, the decomposition of more recent, post-treatment C (Rpre-tr) did not vary diurnally. None of the diurnal variations in components of RH could be explained by only temperature and moisture variations. Our results indicate that the variation observed in the components of RS is the result of complex interaction between dominant biotic controls (e.g. plant activity, mineralization kinetics, competition for substrates) over abiotic controls (temperature, moisture). The interactions and controls among roots and other soil organisms that utilize C of different chemistry, accessibility and ages, results in the overall soil CO2 efflux. Therefore understanding the controls on the components of RS is necessary to elucidate the influence of ecosystem respiration on atmospheric C-pools at different time scales

    Stomatal Development and Conductance of a Tropical Forage Legume Are Regulated by Elevated [CO2] Under Moderate Warming

    Get PDF
    The opening and closing of stomata are controlled by the integration of environmental and endogenous signals. Here, we show the effects of combining elevated atmospheric carbon dioxide concentration (eCO2; 600 μmol mol-1) and warming (+2°C) on stomatal properties and their consequence to plant function in a Stylosanthes capitata Vogel (C3) tropical pasture. The eCO2 treatment alone reduced stomatal density, stomatal index, and stomatal conductance (gs), resulting in reduced transpiration, increased leaf temperature, and leading to maintenance of soil moisture during the growing season. Increased CO2 concentration inside leaves stimulated photosynthesis, starch content levels, water use efficiency, and PSII photochemistry. Under warming, plants developed leaves with smaller stomata on both leaf surfaces; however, we did not see effects of warming on stomatal conductance, transpiration, or leaf water status. Warming alone enhanced PSII photochemistry and photosynthesis, and likely starch exports from chloroplasts. Under the combination of warming and eCO2, leaf temperature was higher than that of leaves from the warming or eCO2 treatments. Thus, warming counterbalanced the effects of CO2 on transpiration and soil water content but not on stomatal functioning, which was independent of temperature treatment. Under warming, and in combination with eCO2, leaves also produced more carotenoids and a more efficient heat and fluorescence dissipation. Our combined results suggest that control on stomatal opening under eCO2 was not changed by a warmer environment; however, their combination significantly improved whole-plant functioning

    Separating species and environmental determinants of leaf functional traits in temperate rainforest plants along a soil-development chronosequence

    Get PDF
    We measured a diverse range of foliar characteristics in shrub and tree species in temperate rainforest communities along a soil chronosequence (six sites from 8 to 120 000 years) and used multilevel model analysis to attribute the proportion of variance for each trait into genetic (G, here meaning species-level), environmental (E) and residual error components. We hypothesised that differences in leaf traits would be driven primarily by changes in soil nutrient availability during ecosystem progression and retrogression. Several leaf structural, chemical and gas-exchange traits were more strongly driven by G than E effects. For leaf mass per unit area (MA), foliar [N], net CO2 assimilation and dark respiration rates and foliar carbohydrate concentration, the G component accounted for 60–87% of the total variance, with the variability associated with plot, the E effect, much less important. Other traits, such as foliar [P] and N : P, displayed strong E and residual effects. Analyses revealed significant reductions in the slopes of G-only bivariate relationships when compared with raw relationships, indicating that a large proportion of trait–trait relationships is species based, and not a response to environment per se. This should be accounted for when assessing the mechanistic basis for using such relationships in order to make predictions of responses of plants to short-term environmental change

    COVID Isolation Eating Scale (CIES): Analysis of the impact of confinement in eating disorders and obesity-A collaborative international study

    Get PDF
    Confinement during the COVID-19 pandemic is expected to have a serious and complex impact on the mental health of patients with an eating disorder (ED) and of patients with obesity. The present manuscript has the following aims: (1) to analyse the psychometric properties of the COVID Isolation Eating Scale (CIES), (2) to explore changes that occurred due to confinement in eating symptomatology; and (3) to explore the general acceptation of the use of telemedicine during confinement. The sample comprised 121 participants (87 ED patients and 34 patients with obesity) recruited from six different centres. Confirmatory Factor Analyses (CFA) tested the rational-theoretical structure of the CIES. Adequate goodness-of-fit was obtained for the confirmatory factor analysis, and Cronbach alpha values ranged from good to excellent. Regarding the effects of confinement, positive and negative impacts of the confinement depends of the eating disorder subtype. Patients with anorexia nervosa (AN) and with obesity endorsed a positive response to treatment during confinement, no significant changes were found in bulimia nervosa (BN) patients, whereas Other Specified Feeding or Eating Disorder (OSFED) patients endorsed an increase in eating symptomatology and in psychopathology. Furthermore, AN patients expressed the greatest dissatisfaction and accommodation difficulty with remote therapy when compared with the previously provided face-to-face therapy. The present study provides empirical evidence on the psychometric robustness of the CIES tool and shows that a negative confinement impact was associated with ED subtype, whereas OSFED patients showed the highest impairment in eating symptomatology and in psychopathology.This manuscript and research was supported by grants from the Ministeriode Economía y Competitividad (PSI2015-68701-R), Instituto de Salud Carlos III (ISCIII) (FIS PI14/00290/ INT19/00046nd PI17/01167) and co-funded by FEDER funds/European Regional Development Fund (ERDF), a way to build Europe. CIBERobn, CIBERsam and CIBERDEM are all initiatives of ISCIII. GMB is supported by a postdoctoral grant from FUNCIVA. This initiative is supported by Generalitat de Catalunya. LM is supported by a postdoctoral grant of the mexican institution Consejo Nacional de Ciencia y Tecnología (CONACYT). PPM was supported, in part, by a Portuguese Foundation for Science and Technology grant (POCI-01-0145-FEDER-028145). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Earth System Model Needs for Including the Interactive Representation of Nitrogen Deposition and Drought Effects on Forested Ecosystems

    No full text
    One of the biggest uncertainties of climate change is determining the response of vegetation to many co-occurring stressors. In particular, many forests are experiencing increased nitrogen deposition and are expected to suffer in the future from increased drought frequency and intensity. Interactions between drought and nitrogen deposition are antagonistic and non-additive, which makes predictions of vegetation response dependent on multiple factors. The tools we use (Earth system models) to evaluate the impact of climate change on the carbon cycle are ill equipped to capture the physiological feedbacks and dynamic responses of ecosystems to these types of stressors. In this manuscript, we review the observed effects of nitrogen deposition and drought on vegetation as they relate to productivity, particularly focusing on carbon uptake and partitioning. We conclude there are several areas of model development that can improve the predicted carbon uptake under increasing nitrogen deposition and drought. This includes a more flexible framework for carbon and nitrogen partitioning, dynamic carbon allocation, better representation of root form and function, age and succession dynamics, competition, and plant modeling using trait-based approaches. These areas of model development have the potential to improve the forecasting ability and reduce the uncertainty of climate models

    Poulsenia armata seedling biomass

    No full text
    Data on Poulsenia armata seedling biomass allocation at a growing house at the Los Tuxtlas Biological Station, Mexico, from 2012. Data includes soil source and maternal habitat as well as total dry mass, root mass fraction, stem mass fraction, leaf mass fraction, specific leaf area, leaf area ratio, stem length, root-to-shoot ratio and number of leaves
    corecore