108 research outputs found

    Adsorption and self-assembly of large polycyclic molecules on the surfaces of TiO_{2} single crystals

    Get PDF
    Titanium dioxide is one of the most frequently studied metal oxides, and its (110) rutile surface serves as a prototypical model for the surface science of such materials. Recent studies have also shown that the (011) surface is relatively easy for preparation in ultra-high vacuum (UHV) and that both the (110) and (011) surfaces could be precisely characterized using scanning tunneling microscopy (STM). The supramolecular self-assembly of organic molecules on the surfaces of titanium dioxide plays an important role in nanofabrication, and it can control the formation and properties of nanostructures, leading to wide range of applications covering the fields of catalysis, coatings and fabrication of sensors and extends to the optoelectronic industry and medical usage. Although the majority of experiments and theoretical calculations are focused on the adsorption of relatively small organic species, in recent years, there has been increasing interest in the properties of larger molecules that have several aromatic rings in which functional units could also be observed. The purpose of this review is to summarize the achievements in the study of single polycyclic molecules and thin layers adsorbed onto the surfaces of single crystalline titanium dioxide over the past decade

    Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

    Get PDF
    Self-assembly of iron(II) phthalocyanine (FePc) molecules on a Ge(001):H surface results in monolayer islands extending over hundreds of nanometers and comprising upright-oriented entities. Scanning tunneling spectroscopy reveals a transport gap of 2.70 eV in agreement with other reports regarding isolated FePc molecules. Detailed analysis of single FePc molecules trapped at surface defects indicates that the molecules stay intact upon adsorption and can be manipulated away from surface defects onto a perfectly hydrogenated surface. This allows for their isolation from the germanium surface

    Higher acenes by on‐surfacedehydrogenation : from heptacene to undecacene

    Get PDF
    A unified approach to the synthesis of the series of higher acenes up to previously unreported undecacene has been developed through the on‐surface dehydrogenation of partially saturated precursors. These molecules could be converted into the parent acenes by both atomic manipulation with the tip of a scanning tunneling and atomic force microscope (STM/AFM) as well as by on‐surface annealing. The structure of the generated acenes has been visualized by high‐resolution non‐contact AFM imaging and the evolution of the transport gap with the increase of the number of fused benzene rings has been determined on the basis of scanning tunneling spectroscopy (STS) measurements

    Fermi level pinning at the Ge(001) surface - A case for non-standard explanation

    Full text link
    To explore the origin of the Fermi level pinning in germanium we investigate the Ge(001) and Ge(001):H surfaces. The absence of relevant surface states in the case of Ge(001):H should unpin the surface Fermi level. This is not observed. For samples with donors as majority dopants the surface Fermi level appears close to the top of the valence band regardless of the surface structure. Surprisingly, for the passivated surface it is located below the top of the valence band allowing scanning tunneling microscopy imaging within the band gap. We argue that the well known electronic mechanism behind band bending does not apply and a more complicated scenario involving ionic degrees of freedom is therefore necessary. Experimental techniques involve four point probe electric current measurements, scanning tunneling microscopy and spectroscopy.Comment: 5 pages, 4 figure

    On-surface synthesis of nanographenes and graphene nanoribbons on titanium dioxide

    Get PDF
    The formation of two types of nanographenes from custom designed and synthesized molecular precursors has been achieved through thermally induced intramolecular cyclodehydrogenation reactions on the semiconducting TiO2_{2}(110)-(1×1) surface, confirmed by the combination of high-resolution scanning tunneling microscopy (STM) and spectroscopy (STS) measurements, and corroborated by theoretical modeling. The application of this protocol on differently shaped molecular precursors demonstrates the ability to induce a highly efficient planarization reaction both within strained pentahelicenes as well as between vicinal phenyl rings. Additionally, by the combination of successive Ullmann-type polymerization and cyclodehydrogenation reactions, the archetypic 7-armchair graphene nanoribbons (7-AGNRs) have also been fabricated on the titanium dioxide surface from the standard 10,10′-dibromo-9,9′-bianthryl (DBBA) molecular precursors. These examples of the effective cyclodehydrogenative planarization processes provide perspectives for the rational design and synthesis of molecular nanostructures on semiconductors

    Tunneling spectroscopy of close-spaced dangling-bond pairs in Si(001):H

    Get PDF
    We present a combined experimental and theoretical study of the electronic properties of close-spaced dangling-bond (DB) pairs in a hydrogen-passivated Si(001):H p-doped surface. Two types of DB pairs are considered, called “cross” and “line” structures. Our scanning tunneling spectroscopy (STS) data show that, although the spectra taken over different DBs in each pair exhibit a remarkable resemblance, they appear shifted by a constant energy that depends on the DB-pair type. This spontaneous asymmetry persists after repeated STS measurements. By comparison with density functional theory (DFT) calculations, we demonstrate that the magnitude of this shift and the relative position of the STS peaks can be explained by distinct charge states for each DB in the pair. We also explain how the charge state is modified by the presence of the scanning tunneling microscopy (STM) tip and the applied bias. Our results indicate that, using the STM tip, it is possible to control the charge state of individual DBs in complex structures, even if they are in close proximity. This observation might have important consequences for the design of electronic circuits and logic gates based on DBs in passivated silicon surfaces

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore