19 research outputs found

    Availability and Accessibility of Research Outputs in NARS: A case study with IARI

    Get PDF
    This article focuses on the trends in publication, authorship pattern, availability, and accessibility of articles during 2008–2010 from the Indian Agricultural Research Institute (IARI), a constituent of the National Agricultural Research System in India. The data reveal that during the period of study, researchers from IARI produced 1,833 publications, most of which were jointly authored, and that the most preferred journal for publication by researchers is the Indian Journal of Agricultural Sciences, which is now an Open Access journal. While publications from IARI are available to subscribers of the Consortium for e-Resources in Agriculture (CeRA), public availability to IARI publications is very meager. Hence, in order to make their research output more accessible and available to a wider audience, IARI researchers should deposit their work in IARI’s Open Access repository Eprints@IARI. However, making such a deposit requires an Open Access policy, which IARI is yet to adopt

    Park availability and major depression in individuals with chronic conditions: Is there an association in urban India?

    Get PDF
    Green space exposure has been positively correlated with better mental-health indicators in several high income countries, but has not been examined in low- and middle-income countries undergoing rapid urbanization. Building on a study of mental health in adults with a pre-existing chronic condition, we examined the association between park availability and major depression among 1208 adults surveyed in Delhi, India. Major depression was measured using the Mini International Neuropsychiatric Interview. The ArcGIS platform was used to quantify park availability indexed as (i) park distance from households, (ii) area of the nearest park; and within one km buffer area around households - the (iii) number and (iv) total area of all parks. Mixed-effects logistic regression models adjusted for socio-demographic characteristics indicated that relative to residents exposed to the largest nearest park areas (tertile 3), the odds [95% confidence interval] of major depression was 3.1 [1.4-7.0] times higher among residents exposed to the smallest nearest park areas (tertile 1) and 2.1 [0.9-4.8] times higher in residents with mid-level exposure (tertile 2). There was no statistically significant association between other park variables tested and major depression. We hypothesized that physical activity in the form of walking, perceived stress levels and satisfaction with the neighborhood environment may have mediating effects on the association between nearest park area and major depression. We found no significant mediation effects for any of our hypothesized variables. In conclusion, our results provide preliminary and novel evidence from India that availability of large parks in the immediate neighborhood positively impacts mental well-being of individuals with pre-existing chronic conditions, at the opportune time when India is embarking on the development of sustainable cities that aim to promote health through smart urban design - one of the key elements of which is the inclusion of urban green spaces

    Probing the potential of bioactive compounds of millets as an inhibitor for lifestyle diseases: molecular docking and simulation-based approach

    Get PDF
    Millets are becoming more popular as a healthy substitute for people with lifestyle disorders. They offer dietary fiber, polyphenols, fatty acids, minerals, vitamins, protein, and antioxidants. The nutritional importance of millets leads to the present in-silico study of selective bioactive compounds docked against the targets of lifestyle diseases, viz., diabetes, hypertension, and atherosclerosis using molecular docking and molecular simulations approach. Pharmacokinetic analysis was also carried out to analyse ADME properties and toxicity analysis, drug-likeliness, and finally target prediction for new targets for uncharacterized compounds or secondary targets for recognized molecules by Swiss Target Prediction was also done. The docking results revealed that the bioactive compound flavan-4-ol, among all the 50 compounds studied, best docked to all the four targets of lifestyle diseases, viz., Human dipeptidyl peptidase IV (−5.94 kcal mol−1 binding energy), Sodium-glucose cotransporter-2 (−6.49 kcal mol−1) diabetes-related enzyme, the Human angiotensin-converting enzyme (−6.31 kcal mol−1) which plays a significant role in hypertension, and Proprotein convertase subtilisin kexin type 9 (−4.67 kcal mol−1) for atherosclerosis. Molecular dynamics simulation analysis substantiates that the flavan-4-ol forms a better stability complex with all the targets. ADMET profiles further strengthened the candidature of the flavan-4-ol bioactive compound to be considered for trial as an inhibitor of targets DPPIV, SGLT2, PCSK9, and hACE. We suggest that more research be conducted, taking Flavon-4-ol into account where it can be used as standard treatment for lifestyle diseases

    High resolution mapping of QTLs for fruit color and firmness in Amrapali/Sensation mango hybrids

    Get PDF
    IntroductionMango (Mangifera indica L.), acclaimed as the ‘king of fruits’ in the tropical world, has historical, religious, and economic values. It is grown commercially in more than 100 countries, and fresh mango world trade accounts for ~3,200 million US dollars for the year 2020. Mango is widely cultivated in sub-tropical and tropical regions of the world, with India, China, and Thailand being the top three producers. Mango fruit is adored for its taste, color, flavor, and aroma. Fruit color and firmness are important fruit quality traits for consumer acceptance, but their genetics is poorly understood.MethodsFor mapping of fruit color and firmness, mango varieties Amrapali and Sensation, having contrasting fruit quality traits, were crossed for the development of a mapping population. Ninety-two bi-parental progenies obtained from this cross were used for the construction of a high-density linkage map and identification of QTLs. Genotyping was carried out using an 80K SNP chip array.Results and discussionInitially, we constructed two high-density linkage maps based on the segregation of female and male parents. A female map with 3,213 SNPs and male map with 1,781 SNPs were distributed on 20 linkages groups covering map lengths of 2,844.39 and 2,684.22cM, respectively. Finally, the integrated map was constructed comprised of 4,361 SNP markers distributed on 20 linkage groups, which consisted of the chromosome haploid number in Mangifera indica (n =20). The integrated genetic map covered the entire genome of Mangifera indica cv. Dashehari, with a total genetic distance of 2,982.75 cM and an average distance between markers of 0.68 cM. The length of LGs varied from 85.78 to 218.28 cM, with a mean size of 149.14 cM. Phenotyping for fruit color and firmness traits was done for two consecutive seasons. We identified important consistent QTLs for 12 out of 20 traits, with integrated genetic linkages having significant LOD scores in at least one season. Important consistent QTLs for fruit peel color are located at Chr 3 and 18, and firmness on Chr 11 and 20. The QTLs mapped in this study would be useful in the marker-assisted breeding of mango for improved efficiency

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    <i style="mso-bidi-font-style:normal"><span style="font-size:11.0pt;mso-bidi-font-size:10.0pt;font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-GB;mso-fareast-language:EN-US;mso-bidi-language:AR-SA" lang="EN-GB">In silico</span></i><span style="font-size:11.0pt;mso-bidi-font-size: 10.0pt;font-family:"Times New Roman";mso-fareast-font-family:"Times New Roman"; mso-bidi-font-family:"Times New Roman";mso-ansi-language:EN-GB;mso-fareast-language: EN-US;mso-bidi-language:AR-SA" lang="EN-GB"> structural and functional analysis of protein encoded by wheat early salt-stress response gene (WESR3)</span>

    No full text
    95-100Salt stress is one of the major abiotic stresses limiting grain yield in wheat (Triticum aestivum L.). Wheat early salt-stress response gene (WESR3) is one of the major salt stress genes, which is affected in the first phase of salt stress. In this study, sequence and structural analysis of protein coded by WESR3 gene was carried out using various bioinformatics tools. Sequence analysis of WESR3 protein revealed the presence of highly conserved regions of Mlo gene family. Three-dimensional modeling was carried out to elucidate its structure and its active site. The sequence analysis revealed that WESR3 protein might be involved in fungal pathogen attack pathway. Thus, in addition to its involvement in abiotic stresses, it also seemed to play an important part in biotic stress pathways. Out of the three modeled protein structures obtained from I-TASSER, HHPred and QUARK, the I-TASSER protein model was the best model based on high confidence score and lesser number of bad contacts. The Ramchandran plot analysis also showed that all amino acid residues of I-TASSER model lie in the allowed region and thus indicating towards the overall good quality of the predicted model. Seventeen active sites were predicted in the protein bearing resemblance to the Mlo family conserved regions. In conclusion, a detailed analysis of WESR3 protein suggested an important role of WESR3 in biotic and abiotic stress. These results aid to the experimental data and help to build up a complete view of WESR3 proteins and their role in plant stress response. </span

    Not Available

    No full text
    Not AvailableBiotic stress is a major cause of heavy loss in grape productivity. In order to develop biotic stress-resistant grape varieties, the key defense genes along with its pathway have to be deciphered. In angiosperm plants, lipase-like protein phytoalexin deficient 4 (PAD4) is well known to be essential for systemic resistance against biotic stress. PAD4 functions together with its interacting partner protein enhanced disease susceptibility 1 (EDS1) to promote salicylic acid (SA)-dependent and SA-independent defense pathway. Existence and structure of key protein of systemic resistance EDS1 and PAD4 are not known in grapes. Before SA pathway studies are taken in grape, molecular evidence of EDS1: PAD4 complex is to be established. To establish this, EDS1 protein sequence was retrieved from NCBI and homologous PAD4 protein was generated using Arabidopsis thaliana as template and conserved domains were confirmed. In this study, computational methods were used to model EDS1 and PAD4 and simulated the interactions of EDS1 and PAD4. Since no structural details of the proteins were available, homology modeling was employed to construct three-dimensional structures. Further, molecular dynamic simulations were performed to study the dynamic behavior of the EDS1 and PAD4. The modeled proteins were validated and subjected to molecular docking analysis. Molecular evidence of stable complex of EDS1:PAD4 in grape supporting SA defense pathway in response to biotic stress is reported in this study. If SA defense pathway genes are explored, then markers of genes involved can play pivotal role in grape variety development especially against biotic stress leading to higher productivity.Not Availabl

    Not Available

    No full text
    Not AvailableA positive association between oxidative stress and hyper-thyroid conditions is well established. Vitamin E (VIT-E) and curcumin (CRM) are considered as potent antioxidant small molecules. Nuclear factor erythroid 2–related factor 2(NRF-2) is known to bind with antioxidant response element and subsequently activate expression of antioxidant enzymes. However, the activation of NRF-2 depends on removal of its regulator Kelch-like ECH-associated protein 1(NRF-2). In the current study, an attempt is made to demonstrate whether effects of VIT-E and CRM are due to direct interaction with the target proteins (i.e. NRF-2, NRF-2, SOD, catalase and LDH) or by possible interaction with the flanking region of their promoters by in silico analysis. Further, these results were corroborated by pretreatment of H9C2 cells (1 x 106 cells per mL of media) with VIT-E (50 lM) and/or CRM (20 lM) for 24 h followed by induction of oxidative stress via T4 (100 nm) administration and assaying the active oxygen metabol ism. Discriminant function analyses (DFA) indicated that T4 has a definite role in increasing oxidative stress as evidenced by induction of ROS generation, increase in mitochondrial membrane potential and elevated lipid peroxidation (LPx). Pretreatment with the two antioxidants have ameliorative effects more so when given in combination. The decline in biological activities of the principal antioxidant enzymes SOD and CAT with respect to T4 treatment and its restoration in antioxidant pretreated group further validated our in silico data.Not Availabl

    Not Available

    No full text
    Not AvailableChickpea (Cicer arietinum L.) is second largest grown legumes worldwide contributing 75% of total pulse production. It is a cool season legume crop and grown in tropical and subtropical areas. Due to drastic climatic changes, chickpea suffers from many biotic (blight and wilt) and abiotic (salinity, drought, cold) stresses that directly impact the growth and yield. In our study, we predicted and annotated the genes related to biotic and abiotic stresses. Total 20162 ESTs for salinity, 34346 for drought and 191 for cold stress were downloaded. For biotic stresses, viz., wilt and blight disease, 7866 and 56 ESTs were collected, respectively from public domain. All these ESTs were assembled into contigs and blast against protein nonredundant database. Each blast results were mapped to get the corresponding GO terms. Total 1631, 3133 and 13 contigs for salinity, drought and cold stress showed 1333, 2693 and 7 GO terms respectively, while 1144 contigs for Fusarium wilt and 6 contigs for Ascochyta blight disease showed 955 and 4 GO terms. These GO terms describe biological process, molecular function and cellular components of corresponding stresses. Remaining 298 (salinity), 440 (drought), 6 (cold), 189 (wilt) and 2 (blight) contigs were mapped to reference genome and further used for annotation using gene prediction methods and promoter analysis. This study provide insight to novel gene related to abiotic and biotic stress mechanism that can be further analyzed in molecular biology studies for breeding programs.Not Availabl

    Not Available

    No full text
    Not AvailableEven though cultivated rice is highly sensitive to salinity, significant variability exists in the primary and secondary gene-pool of rice with respect to traits of salinity tolerance. Breeding salinity tolerance rice varieties is imperative due to climate change and increasing rice demand for global population. A meta-analysis of plethora of genomic data and published literature available on various genes/factors associated with response to rice salinity and tolerance can be used to enlist selected candidates genes affecting salinity. Such genes can be utilized to identify potential candidate salinity resistance genes from donor rice genotypes and facilitate their transfer to high yielding varieties of rice through marker-assisted breeding. This approach has tremendous advantage over transgenic approach as no bio-safety or regulatory issues are involved in exploiting the variability. Meta-analyses were performed on three datasets viz., rice microarray data of 166 series comprising of 2586 samples, 1228 published research literature in the last one and half decades and RNA-Seq data of 454 and Illumina from Sequence Retrieval Archive (SRA) at NCBI. Among microarray dataset, six salinity related series were finally selected and multi experiment analysis revealed 2289 differentially expressed genes belonging to 44 gene families. Out of these, 13 families viz., AP2-EREBP, AUX/IAA, bZIP, C2H2, bHLH, C3H, HB, HSF, MYB, MYB-related, NAC, Tify and WRKY were selected. Applying various parameters on the published literature data, 13 genes were selected, of which five were common to the different microarray datasets. From RNA-Seq data, total of 751 differentially expressed genes were obtained from 21 gene families, out of which 11 genes were common with those obtained from microarray data and five genes, viz., AP2-EREBP/DREB, MYB, HSF, bZIP and NAC were common to all the three data sets. Based on the results obtained, a total of 31 metaanalyzed genes have been selected and recommended for use in genetic improvement programs aimed at salinity resistance in rice.The meta-analysis of microarray, RNA-Seq and published literature has been successfully used to select 31 best salinity tolerance associated genes which can be exploited by candidate gene approach for targeted introgression through marker assisted breeding. This approach has multi-fold advantages, as it obviates statutory and ecological issues. Such endeavors are more warranted for combating the key abiotic stresses like salinity, whose effects are increasing due to a changing climateNot Availabl
    corecore