131 research outputs found

    Splenomegaly as a Primary Manifestation of Gaucher Disease in a Young Adult Woman

    Get PDF
    Gaucher disease is the most common lysosomal storage disease. It is caused by the defective activity of acid ÎČ-glucosidase, which results in the accumulation of lipid glucocerebroside in macrophages throughout the body. In this case report we describe the case of a young adult woman with splenomegaly as the primary manifestation of this pathology. This is a case of type 1 Gaucher disease because there is a lack of primary neurological involvement but we have, instead, an age-independent involvement of the visceral organs. It is very important to classify or characterize these patients in a precise manner and to make a complete diagnosis with the help of the many diagnostic resources now at our disposal, especially with genetics, radiology and new techniques of advanced microscopy, also because Gaucher disease requires a long and complex management from early life to adulthood

    Effect of intensive treatment on diabetic nephropathy in patients with type I diabetes

    Get PDF
    Effect of intensive treatment on diabetic nephropathy in patients with type I diabetes. We evaluated the long-term effect of an intensive treatment of diabetic nephropathy (anti-hypertensive drugs, low protein diet, multiple insulin injections to achieve a good metabolic control) on glomerular filtration rate (GFR) and albumin excretion rate (AER). Fourteen type I diabetic patients (mean age 45 ± 9.5 years, mean duration of diabetes 23.5 ± 7.3 years, 8 males/6 females) with glomerular filtration rate <70 ml/min-1/1.73 m2 and albumin excretion rate >30 ”g/min were treated intensively for 36 months. This intensive treatment consisted of multiple insulin injections, antihypertensive therapy with ACE inhibitors and a low-protein diet (0.8 g/kg body wt/day.) Renal function was evaluated as GFR and AER. HbA1C mean value decreased significantly from 8.7 ± 0.8% to 6.5 ± 0.5% (P < 0.0002). GFR rose from 58 ± 12 ml/min-1/l.73 m2 to 84 ” 11 ml/min-1/l.73 m2 (P < 0.0008). AER decreased from 208 ”g/min (range: 73 to 500) to 63.8 ”g/min (range 15 to 180; P < 0.05). Systolic and diastolic blood pressure decreased respectively from 144 ± 26 mm Hg to 120 ± 15 mm Hg and from 89 ± 9 mm Hg to 75 ± 8 mm Hg (P < 0.01). We obtained a rise of GFR and a reduction of proteinuria after three years of this treatment. We suggest that this intensive treatment in all patients with early stage diabetic nephropathy may be effective in slowing the progression to renal failure

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    GRAWITA: VLT Survey Telescope observations of the gravitational wave sources GW150914 and GW151226

    Get PDF
    We report the results of deep optical follow-up surveys of the first two gravitational-wave sources, GW150914 and GW151226, done by the GRAvitational Wave Inaf TeAm Collaboration (GRAWITA). The VLT Survey Telescope (VST) responded promptly to the gravitational wave alerts sent by the LIGO and Virgo Collaborations, monitoring a region of 90 and 72 deg2 for GW150914 and GW151226, respectively, and repeated the observations over nearly two months. Both surveys reached an average limiting magnitude of about 21 in the r band. The paper describes the VST observational strategy and two independent procedures developed to search for transient counterpart candidates in multi-epoch VST images. Several transients have been discovered but no candidates are recognized to be related to the gravitational wave events. Interestingly, among many contaminant supernovae, we find a possible correlation between the supernova VSTJ57.77559-59.13990 and GRB 150827A detected by Fermi-GBM. The detection efficiency of VST observations for different types of electromagnetic counterparts of gravitational wave events is evaluated for the present and future follow-up surveys

    XIPE: the x-ray imaging polarimetry explorer

    Get PDF
    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Is taurine beneficial in reducing risk factors for diabetes mellitus?

    No full text
    Taurine is a semiessential amino acid, and its deficiency is involved in retinal and cardiac degenerations. In recent years, it was found that diabetes mellitus (DM) is associated with taurine, and many in vivo experimental studies showed that taurine administration is able to reduce the alterations induced by DM in the retina, lens, and peripheral nerve, although its effects on diabetic kidney are dubious. Interestingly, long-term taurine supplementation reduces the mortality rate in diabetic rats. The mechanisms by which taurine exerts beneficial effects in DM are discussed below. Recently, it has been suggested that taurine deficiency may alter the endocrine pancreas fetal programming, increasing the risk of insulin resistance in adult life. The bulk of experimental data suggests that taurine administration could be useful in the treatment of type 1 DM and in the prevention of insulin resistance

    Therapeutic potential of high mobility group box-1 in ischemic injury and tissue regeneration.

    No full text
    High-mobility group box-1 (HMGB1) is a nuclear protein that acts as a cytokine when released into the extracellular milieu by necrotic and inflammatory cells, and is involved in inflammatory responses and tissue repair. This protein is released passively during cellular necrosis by almost all cells that have a nucleus, but is also actively secreted by immune cells such as macrophages and monocytes. This cytokine plays a key role in mediating the local and systemic responses to several stimuli and might have therapeutic relevance. Indeed, vessel-associated stem cells, injected into the general circulation of dystrophic mice, migrate to sites of tissue damage in response to the HMGB1 signal, by a nuclear factor-\u3baB dependent mechanism. Moreover, endogenous HMGB1 enhances angiogenesis and restores cardiac function in a murine model of myocardial infarction, and the exogenous administration of HMGB1 after myocardial infarction leads to the recovery of left ventricular function through the regeneration of cardiomyocytes. Finally, recent findings show that endogenous HMGB1 is crucial for ischemia-induced angiogenesis in diabetic mice and that HMGB1 protein administration enhances collateral blood flow in the ischemic hind limbs of diabetic mice through a VEGF-dependent manner. The mechanisms of action of this protein are complex and are not well known or defined. The objective of this review is to evaluate the data regarding the tissue regeneration effects of HMGB1, with the aim of providing practical considerations about this topic for the management of subjects affected by ischemic and degenerative diseases
    • 

    corecore