32 research outputs found

    Clinically applicable deep learning for diagnosis and referral in retinal disease

    Get PDF
    The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    Get PDF

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Hair Dye Substance Database (HDSD)

    No full text
    Fully 2D-curated database of 313 QSAR-ready hair dye substances available for download as Excel spreadsheet or SDF (structure-data file). Includes information such as substance name, structure, CASRNs, DTXSIDs, classes, color (if applicable), and computed properties. SDF can be opened using chemical drawing software such as ChemDraw Professional or MarvinView. Marvin (ChemAxon) can be downloaded at: https://chemaxon.com/products/marvin/download<div><br></div><div>New with Version 3: Better defined structures for substances with HDSD ID: 91, 99 and 110 (aromaticity issues resolved).</div><div><br></div><div>For details regarding database development, analysis, and potential applications, see https://dx.doi.org/10.1021/acssuschemeng.7b03795. <div><br></div><div> We are seeking to improve the HDSD. Please contact Tova N. Williams at [email protected] for suggestions.</div></div

    Toward the Rational Design of Sustainable Hair Dyes Using Cheminformatics Approaches: Step 1. Database Development and Analysis

    No full text
    Herein, we report on the initial step of the design process of new hair dyes with the desired properties. The first step is dedicated to the development of the largest, publicly available database of hair dye substances (containing temporary and semipermanent hair dyes as well as permanent hair dye precursors) used in commercial hair dye formulations. The database was utilized to perform a cheminformatics study assessing the computed physicochemical properties of the different hair dye substances, especially within each cluster of structurally similar dyes. The various substances could be differentiated based on their average molecular weight, hydrophobicity, topological polar surface area, and number of hydrogen bond acceptors, with some overlap also observed. In particular, we found that dyes such as C.I. Basic Orange 1 and 2 were clustered among the precursors, suggesting that their diffusion behavior is similar to that of permanent hair dye precursors. We anticipate taking advantage of this interesting knowledge in the second design phase of our investigation. As a step in that direction, we used QSAR models and noted that 65% of the substances were predicted to be mutagenic (22 with confidence thresholds >90%), whereas 79% were predicted to be skin sensitizers (37 with confidence thresholds >90%). We discuss the relevance of these preliminary calculations in view of literature-extracted experimental data
    corecore