33 research outputs found

    Development of a new health-related quality of life measure for people with diabetes who experience hypoglycaemia:the Hypo-RESOLVE QoL

    Get PDF
    Aims/hypothesis: Valid and reliable patient-reported outcome measures are vital for assessing disease impact, responsiveness to healthcare and the cost-effectiveness of interventions. A recent review has questioned the ability of existing measures to assess hypoglycaemia-related impacts on health-related quality of life for people with diabetes. This mixed-methods project was designed to produce a novel health-related quality of life patient-reported outcome measure in hypoglycaemia: the Hypo-RESOLVE QoL.Methods: Three studies were conducted with people with diabetes who experience hypoglycaemia. In Stage 1, a comprehensive health-related quality of life framework for hypoglycaemia was elicited from semi-structured interviews (N=31). In Stage 2, the content validity and acceptability of draft measure content were tested via three waves of cognitive debriefing interviews (N=70 people with diabetes; N=14 clinicians). In Stage 3, revised measure content was administered alongside existing generic and diabetes-related measures in a large cross-sectional observational survey to assess psychometric performance (N=1246). The final measure was developed using multiple evidence sources, incorporating stakeholder engagement.Results: A novel conceptual model of hypoglycaemia-related health-related quality of life was generated, featuring 19 themes, organised by physical, social and psychological aspects. From a draft version of 76 items, a final 14-item measure was produced with satisfactory structural (χ2=472.27, df=74, p<0.001; comparative fit index =0.943; root mean square error of approximation =0.069) and convergent validity with related constructs (r=0.46–0.59), internal consistency (α=0.91) and test–retest reliability (intraclass correlation coefficient =0.87).Conclusions/interpretation: The Hypo-RESOLVE QoL is a rigorously developed patient-reported outcome measure assessing the health-related quality of life impacts of hypoglycaemia. The Hypo-RESOLVE QoL has demonstrable validity and reliability and has value for use in clinical decision-making and as a clinical trial endpoint

    Development of a new health-related quality of life measure for people with diabetes who experience hypoglycaemia:the Hypo-RESOLVE QoL

    Get PDF
    Aims/hypothesis: Valid and reliable patient-reported outcome measures are vital for assessing disease impact, responsiveness to healthcare and the cost-effectiveness of interventions. A recent review has questioned the ability of existing measures to assess hypoglycaemia-related impacts on health-related quality of life for people with diabetes. This mixed-methods project was designed to produce a novel health-related quality of life patient-reported outcome measure in hypoglycaemia: the Hypo-RESOLVE QoL.Methods: Three studies were conducted with people with diabetes who experience hypoglycaemia. In Stage 1, a comprehensive health-related quality of life framework for hypoglycaemia was elicited from semi-structured interviews (N=31). In Stage 2, the content validity and acceptability of draft measure content were tested via three waves of cognitive debriefing interviews (N=70 people with diabetes; N=14 clinicians). In Stage 3, revised measure content was administered alongside existing generic and diabetes-related measures in a large cross-sectional observational survey to assess psychometric performance (N=1246). The final measure was developed using multiple evidence sources, incorporating stakeholder engagement.Results: A novel conceptual model of hypoglycaemia-related health-related quality of life was generated, featuring 19 themes, organised by physical, social and psychological aspects. From a draft version of 76 items, a final 14-item measure was produced with satisfactory structural (χ2=472.27, df=74, p<0.001; comparative fit index =0.943; root mean square error of approximation =0.069) and convergent validity with related constructs (r=0.46–0.59), internal consistency (α=0.91) and test–retest reliability (intraclass correlation coefficient =0.87).Conclusions/interpretation: The Hypo-RESOLVE QoL is a rigorously developed patient-reported outcome measure assessing the health-related quality of life impacts of hypoglycaemia. The Hypo-RESOLVE QoL has demonstrable validity and reliability and has value for use in clinical decision-making and as a clinical trial endpoint

    Risk factors and prediction of hypoglycaemia using the Hypo-RESOLVE cohort:a secondary analysis of pooled data from insulin clinical trials

    Get PDF
    AIMS/HYPOTHESIS: The objective of the Hypoglycaemia REdefining SOLutions for better liVES (Hypo-RESOLVE) project is to use a dataset of pooled clinical trials across pharmaceutical and device companies in people with type 1 or type 2 diabetes to examine factors associated with incident hypoglycaemia events and to quantify the prediction of these events.METHODS: Data from 90 trials with 46,254 participants were pooled. Analyses were done for type 1 and type 2 diabetes separately. Poisson mixed models, adjusted for age, sex, diabetes duration and trial identifier were fitted to assess the association of clinical variables with hypoglycaemia event counts. Tree-based gradient-boosting algorithms (XGBoost) were fitted using training data and their predictive performance in terms of area under the receiver operating characteristic curve (AUC) evaluated on test data. Baseline models including age, sex and diabetes duration were compared with models that further included a score of hypoglycaemia in the first 6 weeks from study entry, and full models that included further clinical variables. The relative predictive importance of each covariate was assessed using XGBoost's importance procedure. Prediction across the entire trial duration for each trial (mean of 34.8 weeks for type 1 diabetes and 25.3 weeks for type 2 diabetes) was assessed.RESULTS: For both type 1 and type 2 diabetes, variables associated with more frequent hypoglycaemia included female sex, white ethnicity, longer diabetes duration, treatment with human as opposed to analogue-only insulin, higher glucose variability, higher score for hypoglycaemia across the 6 week baseline period, lower BP, lower lipid levels and treatment with psychoactive drugs. Prediction of any hypoglycaemia event of any severity was greater than prediction of hypoglycaemia requiring assistance (level 3 hypoglycaemia), for which events were sparser. For prediction of level 1 or worse hypoglycaemia during the whole follow-up period, the AUC was 0.835 (95% CI 0.826, 0.844) in type 1 diabetes and 0.840 (95% CI 0.831, 0.848) in type 2 diabetes. For level 3 hypoglycaemia, the AUC was lower at 0.689 (95% CI 0.667, 0.712) for type 1 diabetes and 0.705 (95% CI 0.662, 0.748) for type 2 diabetes. Compared with the baseline models, almost all the improvement in prediction could be captured by the individual's hypoglycaemia history, glucose variability and blood glucose over a 6 week baseline period.CONCLUSIONS/INTERPRETATION: Although hypoglycaemia rates show large variation according to sociodemographic and clinical characteristics and treatment history, looking at a 6 week period of hypoglycaemia events and glucose measurements predicts future hypoglycaemia risk.</p

    Risk factors and prediction of hypoglycaemia using the Hypo-RESOLVE cohort:a secondary analysis of pooled data from insulin clinical trials

    Get PDF
    AIMS/HYPOTHESIS: The objective of the Hypoglycaemia REdefining SOLutions for better liVES (Hypo-RESOLVE) project is to use a dataset of pooled clinical trials across pharmaceutical and device companies in people with type 1 or type 2 diabetes to examine factors associated with incident hypoglycaemia events and to quantify the prediction of these events.METHODS: Data from 90 trials with 46,254 participants were pooled. Analyses were done for type 1 and type 2 diabetes separately. Poisson mixed models, adjusted for age, sex, diabetes duration and trial identifier were fitted to assess the association of clinical variables with hypoglycaemia event counts. Tree-based gradient-boosting algorithms (XGBoost) were fitted using training data and their predictive performance in terms of area under the receiver operating characteristic curve (AUC) evaluated on test data. Baseline models including age, sex and diabetes duration were compared with models that further included a score of hypoglycaemia in the first 6 weeks from study entry, and full models that included further clinical variables. The relative predictive importance of each covariate was assessed using XGBoost's importance procedure. Prediction across the entire trial duration for each trial (mean of 34.8 weeks for type 1 diabetes and 25.3 weeks for type 2 diabetes) was assessed.RESULTS: For both type 1 and type 2 diabetes, variables associated with more frequent hypoglycaemia included female sex, white ethnicity, longer diabetes duration, treatment with human as opposed to analogue-only insulin, higher glucose variability, higher score for hypoglycaemia across the 6 week baseline period, lower BP, lower lipid levels and treatment with psychoactive drugs. Prediction of any hypoglycaemia event of any severity was greater than prediction of hypoglycaemia requiring assistance (level 3 hypoglycaemia), for which events were sparser. For prediction of level 1 or worse hypoglycaemia during the whole follow-up period, the AUC was 0.835 (95% CI 0.826, 0.844) in type 1 diabetes and 0.840 (95% CI 0.831, 0.848) in type 2 diabetes. For level 3 hypoglycaemia, the AUC was lower at 0.689 (95% CI 0.667, 0.712) for type 1 diabetes and 0.705 (95% CI 0.662, 0.748) for type 2 diabetes. Compared with the baseline models, almost all the improvement in prediction could be captured by the individual's hypoglycaemia history, glucose variability and blood glucose over a 6 week baseline period.CONCLUSIONS/INTERPRETATION: Although hypoglycaemia rates show large variation according to sociodemographic and clinical characteristics and treatment history, looking at a 6 week period of hypoglycaemia events and glucose measurements predicts future hypoglycaemia risk.</p

    Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    How long one lives, how many years of life are spent in good and poor health, and how the population's state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years. Methods We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. Findings Globally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1-7·8), from 65·6 years (65·3-65·8) in 1990 to 73·0 years (72·7-73·3) in 2017. The increase in years of life varied from 5·1 years (5·0-5·3) in high SDI countries to 12·0 years (11·3-12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1-33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8-15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9-6·7), from 57·0 years (54·6-59·1) in 1990 to 63·3 years (60·5-65·7) in 2017. The increase varied from 3·8 years (3·4-4·1) in high SDI countries to 10·5 years (9·8-11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4-1·7) in Saint Vincent and the Grenadines (62·4 years [59·9-64·7] in 1990 to 63·5 years [60·9-65·8] in 2017) to 23·7 years (21·9-25·6) in Eritrea (30·7 years [28·9-32·2] in 1990 to 54·4 years [51·5-57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6-2·3) in Algeria to 11·9 years (10·9-12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75·8 years [72·4-78·7]) and males (72·6 years [69·8-75·0]) and the lowest estimates were in Central African Republic (47·0 years [43·7-50·2] for females and 42·8 years [40·1-45·6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41·3% (38·8-43·5) for communicable diseases and by 49·8% (47·9-51·6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40·1% (36·8-43·0), although age-standardised DALY rates decreased by 18·1% (16·0-20·2)

    Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    How long one lives, how many years of life are spent in good and poor health, and how the population's state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years.; We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. Globally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1-7·8), from 65·6 years (65·3-65·8) in 1990 to 73·0 years (72·7-73·3) in 2017. The increase in years of life varied from 5·1 years (5·0-5·3) in high SDI countries to 12·0 years (11·3-12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1-33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8-15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9-6·7), from 57·0 years (54·6-59·1) in 1990 to 63·3 years (60·5-65·7) in 2017. The increase varied from 3·8 years (3·4-4·1) in high SDI countries to 10·5 years (9·8-11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4-1·7) in Saint Vincent and the Grenadines (62·4 years [59·9-64·7] in 1990 to 63·5 years [60·9-65·8] in 2017) to 23·7 years (21·9-25·6) in Eritrea (30·7 years [28·9-32·2] in 1990 to 54·4 years [51·5-57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6-2·3) in Algeria to 11·9 years (10·9-12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75·8 years [72·4-78·7]) and males (72·6 years [69·8-75·0]) and the lowest estimates were in Central African Republic (47·0 years [43·7-50·2] for females and 42·8 years [40·1-45·6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41·3% (38·8-43·5) for communicable diseases and by 49·8% (47·9-51·6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40·1% (36·8-43·0), although age-standardised DALY rates decreased by 18·1% (16·0-20·2). With increasing life expectancy in most countries, the question of whether the additional years of life gained are spent in good health or poor health has been increasingly relevant because of the potential policy implications, such as health-care provisions and extending retirement ages. In some locations, a large proportion of those additional years are spent in poor health. Large inequalities in HALE and disease burden exist across countries in different SDI quintiles and between sexes. The burden of disabling conditions has serious implications for health system planning and health-related expenditures. Despite the progress made in reducing the burden of communicable diseases and neonatal disorders in low SDI countries, the speed of this progress could be increased by scaling up proven interventions. The global trends among non-communicable diseases indicate that more effort is needed to maximise HALE, such as risk prevention and attention to upstream determinants of health

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk-outcome associations. METHODS: We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017
    corecore