783 research outputs found

    Approaching criticality via the zero dissipation limit in the abelian avalanche model

    Get PDF
    The discrete height abelian sandpile model was introduced by Bak, Tang & Wiesenfeld and Dhar as an example for the concept of self-organized criticality. When the model is modified to allow grains to disappear on each toppling, it is called bulk-dissipative. We provide a detailed study of a continuous height version of the abelian sandpile model, called the abelian avalanche model, which allows an arbitrarily small amount of dissipation to take place on every toppling. We prove that for non-zero dissipation, the infinite volume limit of the stationary measure of the abelian avalanche model exists and can be obtained via a weighted spanning tree measure. We show that in the whole non-zero dissipation regime, the model is not critical, i.e., spatial covariances of local observables decay exponentially. We then study the zero dissipation limit and prove that the self-organized critical model is recovered, both for the stationary measure and for the dynamics. We obtain rigorous bounds on toppling probabilities and introduce an exponent describing their scaling at criticality. We rigorously establish the mean-field value of this exponent for d>4d > 4.Comment: 46 pages, substantially revised 4th version, title has been changed. The main new material is Section 6 on toppling probabilities and the toppling probability exponen

    Pre-cooling for endurance exercise performance in the heat: a systematic review.

    Get PDF
    PMCID: PMC3568721The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/166. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Endurance exercise capacity diminishes under hot environmental conditions. Time to exhaustion can be increased by lowering body temperature prior to exercise (pre-cooling). This systematic literature review synthesizes the current findings of the effects of pre-cooling on endurance exercise performance, providing guidance for clinical practice and further research

    Rapid and Reversible Recruitment of Early Visual Cortex for Touch

    Get PDF
    The loss of vision has been associated with enhanced performance in non-visual tasks such as tactile discrimination and sound localization. Current evidence suggests that these functional gains are linked to the recruitment of the occipital visual cortex for non-visual processing, but the neurophysiological mechanisms underlying these crossmodal changes remain uncertain. One possible explanation is that visual deprivation is associated with an unmasking of non-visual input into visual cortex.We investigated the effect of sudden, complete and prolonged visual deprivation (five days) in normally sighted adult individuals while they were immersed in an intensive tactile training program. Following the five-day period, blindfolded subjects performed better on a Braille character discrimination task. In the blindfold group, serial fMRI scans revealed an increase in BOLD signal within the occipital cortex in response to tactile stimulation after five days of complete visual deprivation. This increase in signal was no longer present 24 hours after blindfold removal. Finally, reversible disruption of occipital cortex function on the fifth day (by repetitive transcranial magnetic stimulation; rTMS) impaired Braille character recognition ability in the blindfold group but not in non-blindfolded controls. This disruptive effect was no longer evident once the blindfold had been removed for 24 hours.Overall, our findings suggest that sudden and complete visual deprivation in normally sighted individuals can lead to profound, but rapidly reversible, neuroplastic changes by which the occipital cortex becomes engaged in processing of non-visual information. The speed and dynamic nature of the observed changes suggests that normally inhibited or masked functions in the sighted are revealed by visual loss. The unmasking of pre-existing connections and shifts in connectivity represent rapid, early plastic changes, which presumably can lead, if sustained and reinforced, to slower developing, but more permanent structural changes, such as the establishment of new neural connections in the blind

    Social Network Analytics for Advanced Bibliometrics: Referring to Actor Roles of Management Journals instead of Journal Rankings

    Get PDF
    Impact factors are commonly used to assess journals relevance. This implies a simplified view on science as a single-stage linear process. Therefore, few top-tier journals are one-sidedly favored as outlets, such that submissions to top-tier journals explode whereas others are short of submissions. Consequently, the often claimed gap between research and practical application in application-oriented disciplines as business administration is not narrowing but becoming entrenched. A more complete view of the scientific system is needed to fully capture journals ´ contributions in the development of a discipline. Simple citation measures, as e.g. citation counts, are commonly used to evaluate scientific work. There are many known dangers of miss- or over-interpretation of such simple data and this paper adds to this discussion by developing an alternative way of interpreting a discipline based on the positions and roles of journals in their wider network. Specifically, we employ ideas from the network analytic approach. Relative positions allow the direct comparison between different fields. Similarly, the approach provides a better understanding of the diffusion process of knowledge as it differentiates positions in the knowledge creation process. We demonstrate how different modes of social capital create different patterns of action that require a multidimensional evaluation of scientific research. We explore different types of social capital and intertwined relational structures of actors to compare journals with different bibliometric profiles. Ultimately, we develop a multi-dimensional evaluation of actor roles based upon multiple indicators and we test this approach by classifying management journals based on their bibliometric environment

    The Evolution of Enzyme Specificity in the Metabolic Replicator Model of Prebiotic Evolution

    Get PDF
    The chemical machinery of life must have been catalytic from the outset. Models of the chemical origins have attempted to explain the ecological mechanisms maintaining a minimum necessary diversity of prebiotic replicator enzymes, but little attention has been paid so far to the evolutionary initiation of that diversity. We propose a possible first step in this direction: based on our previous model of a surface-bound metabolic replicator system we try to explain how the adaptive specialization of enzymatic replicator populations might have led to more diverse and more efficient communities of cooperating replicators with two different enzyme activities. The key assumptions of the model are that mutations in the replicator population can lead towards a) both of the two different enzyme specificities in separate replicators: efficient “specialists” or b) a “generalist” replicator type with both enzyme specificities working at less efficiency, or c) a fast-replicating, non-enzymatic “parasite”. We show that under realistic trade-off constraints on the phenotypic effects of these mutations the evolved replicator community will be usually composed of both types of specialists and of a limited abundance of parasites, provided that the replicators can slowly migrate on the mineral surface. It is only at very weak trade-offs that generalists take over in a phase-transition-like manner. The parasites do not seriously harm the system but can freely mutate, therefore they can be considered as pre-adaptations to later, useful functions that the metabolic system can adopt to increase its own fitness

    Targeting Antibody Responses to the Membrane Proximal External Region of the Envelope Glycoprotein of Human Immunodeficiency Virus

    Get PDF
    Although human immunodeficiency type 1 (HIV-1) infection induces strong antibody responses to the viral envelope glycoprotein (Env) only a few of these antibodies possess the capacity to neutralize a broad range of strains. The induction of such antibodies represents an important goal in the development of a preventive vaccine against the infection. Among the broadly neutralizing monoclonal antibodies discovered so far, three (2F5, Z13 and 4E10) target the short and hidden membrane proximal external region (MPER) of the gp41 transmembrane protein. Antibody responses to MPER are rarely observed in HIV-infected individuals or after immunization with Env immunogens. To initiate antibody responses to MPER in its membrane-embedded native conformation, we generated expression plasmids encoding the membrane-anchored ectodomain of gp41 with N-terminal deletions of various sizes. Following transfection of these plasmids, the MPER domains are displayed on the cell surface and incorporated into HIV virus like particles (VLP). Transfected cells displaying MPER mutants bound as efficiently to both 2F5 and 4E10 as cells transfected with a plasmid encoding full-length Env. Mice immunized with VLPs containing the MPER mutants produced MPER-specific antibodies, the levels of which could be increased by the trimerization of the displayed proteins as well as by a DNA prime-VLP boost immunization strategy. Although 2F5 competed for binding to MPER with antibodies in sera of some of the immunized mice, neutralizing activity could not be detected. Whether this is due to inefficient binding of the induced antibodies to MPER in the context of wild type Env or whether the overall MPER-specific antibody response induced by the MPER display mutants is too low to reveal neutralizing activity, remains to be determined

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    A quantitative model for estimating risk from multiple interacting natural hazards: an application to northeast Zhejiang, China

    Get PDF
    Multi-hazard risk assessment is a major concern in risk analysis, but most approaches do not consider all hazard interactions when calculating possible losses. We address this problem by developing an improved quantitative model - Model for multi-hazard Risk assessment with a consideration of Hazard Interaction (MmhRisk-HI). This model calculates the possible loss caused by multiple hazards, with an explicit consideration of interaction between those hazards. There are two main components to the model. In the first, based on the hazard-forming environment, relationships among hazards are classified into four types for calculation of the exceedance probability of multiple hazards occurrence. In the second, a Bayesian network is used to calculate possible loss caused by multiple hazards with different exceedance probabilities. A multi-hazard risk map can then be drawn addressing the probability of multi-hazard occurrence and corresponding loss. This model was applied in northeast Zhejiang, China and validated by comparison against an observed multi-hazard sequence. The validation results show that the model can more effectively represent the real world, and that the modelled outputs, possible loss caused by multiple hazards, are reliable. The outputs can additionally help to identify areas at greatest risk, and allows a determination of the factors that contribute to that risk, and hence the model can provide useful further information for planners and decision-makers concerned with risk mitigation

    Role of deep sponge grounds in the Mediterranean Sea: a case study in southern Italy

    Get PDF
    The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 +/- 1.1 specimens m(-2) (approximately 230 gWW m(-2) of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 +/- 0.7 specimens m(-2), approximately 315 gWW m(-2) of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m(-2)). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic-pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 +/- 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter
    corecore