75 research outputs found

    Weddell Sea iceberg drift: Five years of observations

    Get PDF
    Since 1999, 52 icebergs have been tagged with GPS buoys in the Weddell Seato enable monitoring of their position. The chosen icebergs were of small tomedium size, with a few icebergs larger than 10 km associatedwith the calving of icebergs A38 and A43 from the Ronne Ice Shelf.The majority of icebergs were tagged off Neumayer Station (8E, 70S).It was found that smaller bergs with edges shorter than 200 m had the shortestlife cycle (< 0.5 yr). Iceberg and thus freshwater export out of theWeddell Sea was found to be highly variable. In one year the majority of buoysdeployed remained in the Weddell Sea, constituting about 40 % of the NCEP P-Efreshwater input, whereas in other years all of the tagged icebergs were exported.The observed drifts of icebergs and sea-ice showed a remarkably coherent motion.The analysis of an iceberg - sea-ice buoy array in the western Weddell Seaand an iceberg array in the eastern Weddell Sea showed a coherent sea-iceiceberg drift in sea-ice concentrations above 86 %. Dynamic kinematic parameter(DKP) during the course of coherent movement were low and deviations from the meancourse associated with the passage of low-pressure system. The length scale ofcoherent movement was estimated to be less than 250km; about half the value found forthe Arctic Ocean

    Ocean-scale footprint of a highly mobile fishing fleet: Social-ecological drivers of fleet behaviour and evidence of illegal fishing.

    Get PDF
    Managing the footprint of highly mobile fishing fleets is increasingly important due to continuing declines in fish populations. However, social-ecological drivers for fisher behaviour remain poorly understood for many fleets globally. Using the Sri Lankan fleet as a case study, we explored the role of social, environmental and policy drivers of effort distribution and illegal fishing. We used semi-structured interviews and participatory mapping with 95 fishers, combined with explanatory modelling (GLM) and multivariate statistics, including principal component analysis (PCA). Our findings highlighted the broad footprint (~3,800,000 km2) of this fleet, with fishing effort expended in high seas (53.9%), domestic (40.9%) and, illegally, in foreign waters (5.2%). Twenty-six per cent of fishers directly admitted to fishing illegally in foreign waters during interviews, whereas 62% of fishers indicated doing so during participatory mapping. GLMs explained underlying decisions of where to fish (36% of the total deviance in effort distribution) as a function of social variables (14%), notably distance from landing sites (13%), and environmental variables (11%), notably sea surface temperature (10%). Multivariate analysis revealed that individual fisher characteristics associated with illegal fishing, such as a level of reliance on sharks, vary across the fleet. The analysis of qualitative data suggested that the influence of interpersonal and community social networks and perceptions of higher catch value, particularly of sharks, may be important. Our approach demonstrated the utility of mixed methods research, including the collection of qualitative data, for creating a detailed understanding of spatial behaviour, including decisions of whether to fish illegally. Results highlighted the importance of adopting a social-ecological lens to investigate drivers for human behaviour and non-compliance with rules. We advocate for a nuanced approach to monitoring and managing of fleets, including investigating localised social drivers for illegal fishing and enhancing regional transparency in fleet monitoring

    Deep Water Exchange through the Owen Fracture Zone in the Arabian Sea

    Get PDF
    From geostrophic calculations the exchange of deep water from the Somali into the Arabian Basin through the Owen Fracture Zone has been estimated to be about 2 Sv, with a seasonal modulation of the same magnitude. After leaving the Fracture Zone, the flow bifurcates into a northern and a southern branch, each closely following the slope of the Carlsberg Ridge. The weaker vertical gradients of the hydrographic properties in the deep Arabian Basin are consistent with enhanced vertical mixing at the rugged topography over the Carlsberg Ridge

    Assessing the impact of diagenesis on foraminiferal geochemistry from a low latitude, shallow-water drift deposit

    Get PDF
    Due to their large heat and moisture storage capabilities, the tropics are fundamental in modulating both regional and global climate. Furthermore, their thermal response during past extreme warming periods, such as super interglacials, is not fully resolved. In this regard, we present high-resolution (analytical) foraminiferal geochemical (ÎŽ18O and Mg/Ca) records for the last 1800 kyr from the shallow (487 m) Inner Sea drift deposits of the Maldives archipelago in the equatorial Indian Ocean. Considering the diagenetic susceptibility of these proxies, in carbonate-rich environments, we assess the integrity of a suite of commonly used planktonic and benthic foraminifera geochemical datasets (Globigerinoides ruber (white), Globigerinita glutinata (with bulla), Pulleniatina obliquiloculata (with cortex) and Cibicides mabahethi) and their use for future paleoceanographic reconstructions. Using a combination of spot Secondary Ion Mass Spectrometer, Electron Probe Micro-Analyzer and Scanning Electron Microscope image data, it is evident that authigenic overgrowths are present on both the external and internal test (shell) surfaces, yet the degree down-core as well as the associated bias is shown to be variable across the investigated species and proxies. Given the elevated authigenic overgrowth Mg/Ca (∌12–22 mmol/mol) and ÎŽ18O values (closer to the benthic isotopic compositions) the whole-test planktonic G. ruber (w) geochemical records are notably impacted beyond ∌627.4 ka (24.7 mcd). Yet, considering the setting (i.e. bottom water location) for overgrowth formation, the benthic foraminifera ÎŽ18O record is markedly less impacted with only minor diagenetic bias beyond ∌790.0 ka (28.7 mcd). Even though only the top of the G. ruber (w) and C. mabahethi records (whole-test data) would be suitable for paleo-reconstructions of absolute values (i.e. sea surface temperature, salinity, seawater ÎŽ18O), the long-term cycles, while dampened, appear to be preserved. Furthermore, planktonic species with thicker-tests (i.e. P. obliquiloculata (w/c)) might be better suited, in comparison to thinner-test counter-parts (i.e. G. glutinata (w/b), G. ruber (w)), for traditional whole- test geochemical studies in shallow, carbonate-rich environments. A thicker test equates to a smaller overall bias from the authigenic overgrowth. Overall, if the diagenetic impact is constrained, as done in this study, these types of diagenetically altered geochemical records can still significantly contribute to studies relating to past tropical seawater temperatures, latitudinal scale ocean current shifts and South Asian Monsoon dynamics

    Seasonal cycle of CO2 from the sea ice edge to island blooms in the Scotia Sea, Southern Ocean

    Get PDF
    The Scotia Sea region contains some of the most productive waters of the Southern Ocean. It is also a dynamic region through the interaction of deep water masses with the atmosphere. We present a first seasonally-resolved time series of the fugacity of CO2 (fCO2) from spring 2006, summer 2008, autumn 2009 and winter (potential temperature minimum) along a 1000 km transect from the pack ice to the Polar Front to quantify the effects of biology and temperature on oceanic fCO2. Substantial spring and summer decreases in sea surface fCO2 occurred in phytoplankton blooms that developed in the naturally iron fertilised waters downstream (north) of South Georgia island (54-55S, 36-38W) and following sea ice melt (in the seasonal ice zone). The largest seasonal fCO2 amplitude (fCO2) of 159 uatm was found in the South Georgia bloom. In this region, biological carbon uptake dominated the seasonal signal, reducing the winter maxima in oceanic fCO2 by 257 uatm by the summer. In the Weddell-Scotia Confluence, the southern fringe of the Scotia Sea, the shift from wintertime CO2-rich conditions in ice covered waters to CO2 undersaturation in the spring blooms during and upon sea ice melt created strong seasonality in oceanic fCO2. Temperature effects on oceanic fCO2 ranged from fCO2sst of 55 uatm in the seasonal ice zone to almost double that downstream of South Georgia (98 uatm). The seasonal cycle of surface water fCO2 in the high-nutrient low-chlorophyll region of the central Scotia Sea had the weakest biological control and lowest seasonality. Basin-wide biological processes dominated the seasonal control on oceanic fCO2 (fCO2bio of 159 ÎŒatm), partially compensated (43%) by moderate temperature control (fCO2sst of 68 ÎŒatm). The patchwork of productivity across the Scotia Sea creates regions of seasonally strong biological uptake of CO2 in the Southern Ocean

    Does bathymetry drive coastal whale shark (Rhincodon typus) aggregations?

    Get PDF
    Background The whale shark (Rhincodon typus) is known to aggregate in a number of coastal locations globally, however what causes these aggregations to form where they do is largely unknown. This study examines whether bathymetry is an important driver of coastal aggregation locations for R. typus through bathymetry’s effect on primary productivity and prey availability. This is a global study taking into account all coastal areas within R. typus’ range. Methods R. typus aggregation locations were identified through an extensive literature review. Global bathymetric data were compared at R. typus aggregation locations and a large random selection of non-aggregation areas. Generalised linear models were used to assess which bathymetric characteristic had the biggest influence on aggregation presence. Results Aggregation sites were significantly shallower than non-aggregation sites and in closer proximity to deep water (the mesopelagic zone) by two orders of magnitude. Slope at aggregation sites was significantly steeper than non-aggregation sites. These three bathymetric variables were shown to have the biggest association with aggregation sites, with up to 88% of deviation explained by the GLMs. Discussion The three key bathymetric characteristics similar at the aggregation sites are known to induce upwelling events, increase primary productivity and consequently attract numerous other filter feeding species. The location of aggregation sites in these key areas can be attributed to this increased prey availability, thought to be the main reason R. typus aggregations occur, extensively outlined in the literature. The proximity of aggregations to shallow areas such as reefs could also be an important factor why whale sharks thermoregulate after deep dives to feed. These findings increase our understanding of whale shark behaviour and may help guide the identification and conservation of further aggregation sites

    Neotectonics of the SW Iberia margin, Gulf of Cadiz and Alboran Sea: a reassessment including recent structural, seismic and geodetic data

    Get PDF
    We use a thin-shell approximation for the lithosphere to model the neotectonics of the Gulf of Cadiz, SW Iberia margin and the westernmost Mediterranean, in the eastern segment of the Azores-Gibraltar plate boundary. In relation to previous neotectonic models in the region, we utilize a better constrained structural map offshore, and the recent GPS measurements over NW Africa and Iberia have been taken into account, together with the seismic strain rate and stress data, to evaluate alternative geodynamic settings proposed for the region. We show that by assuming a relatively simple, two-plate tectonic framework, where Nubia and Eurasia converge NW-SE to WNW-ESE at a rate of 4.5-6 mm yr-1, the models correctly predict the amount of shortening and wrenching between northern Algeria-Morocco and southern Spain and between NW Morocco and SW Iberia, as estimated from both GPS data and geological constraints. The consistency between modelled and observed velocities in the vicinity of Gibraltar and NW Morocco indicates that forcing by slab sinking beneath Gibraltar is not required to reproduce current horizontal deformation in these areas. In the Gulf of Cadiz and SW Iberia, the modelling results support a diffuse Nubia-Eurasia Plate boundary, where the convergence is accommodated along NNE-SSW to NE-SW and ENE-WSW thrust faults and WNW-ESE right-lateral strike-slip faults, over an area >200 km wide, in good general agreement with the distribution of the seismic strain rate and associated faulting mechanisms. The modelling results are robust to regional uncertainties in the structure of the lithosphere and have important implications for the earthquake and tsunami hazard of Portugal, SW Spain and Morocco. We predict maximum, long-term average fault slip rates between 1-2 mm yr-1, that is, less than 50 per cent the average plate relative movement, suggesting very long return periods for high-magnitude (Mw > 8) earthquakes on individual structures.publishe
    • 

    corecore