1,153 research outputs found

    Motion of pole-dipole and quadrupole particles in non-minimally coupled theories of gravity

    Full text link
    We study theories of gravity with non-minimal coupling between polarized media with pole-dipole and quadrupole moments and an arbitrary function of the space-time curvature scalar RR and the squares of the Ricci and Riemann curvature tensors. We obtain the general form of the equation of motion and show that an induced quadrupole moment emerges as a result of the curvature tensor dependence of the function coupled to the matter. We derive the explicit forms of the equations of motion in the particular cases of coupling to a function of the curvature scalar alone, coupling to an arbitrary function of the square of the Riemann curvature tensor, and coupling to an arbitrary function of the Gauss-Bonnet invariant. We show that in these cases the extra force resulting from the non-minimal coupling can be expressed in terms of the induced moments

    Multipolar Expansions for the Relativistic N-Body Problem in the Rest-Frame Instant Form

    Get PDF
    Dixon's multipoles for a system of N relativistic positive-energy scalar particles are evaluated in the rest-frame instant form of dynamics. The Wigner hyperplanes (intrinsic rest frame of the isolated system) turn out to be the natural framework for describing multipole kinematics. In particular, concepts like the {\it barycentric tensor of inertia} can be defined in special relativity only by means of the quadrupole moments of the isolated system.Comment: 46 pages, revtex fil

    Exotic Hill Problem: Hall motions and symmetries

    Full text link
    Our previous study of a system of bodies assumed to move along almost circular orbits around a central mass, approximately described by Hill's equations, is extended to "exotic" [alias non-commutative] particles. For a certain critical value of the angular velocity, the only allowed motions follow the Hall law. Translations and generalized boosts span two independent Heisenberg algebras with different central parameters. In the critical case, the symmetry reduces to a single Heisenberg algebra.Comment: RevTeX, 4 pages, 4 figure

    Canonical endomorphism field on a Lie algebra

    Full text link
    We show that every Lie algebra is equipped with a natural (1,1)(1,1)-variant tensor field, the "canonical endomorphism field", naturally determined by the Lie structure, and satisfying a certain Nijenhuis bracket condition. This observation may be considered as complementary to the Kirillov-Kostant-Souriau theorem on symplectic geometry of coadjoint orbits. We show its relevance for classical mechanics, in particular for Lax equations. We show that the space of Lax vector fields is closed under Lie bracket and we introduce a new bracket for vector fields on a Lie algebra. This bracket defines a new Lie structure on the space of vector fields.Comment: 18 page

    A Gauge-invariant Hamiltonian Description of the Motion of Charged Test Particles

    Get PDF
    New, gauge-independent, second-order Lagrangian for the motion of classical, charged test particles is used to derive the corresponding Hamiltonian formulation. For this purpose a Hamiltonian description of the theories derived from the second-order Lagrangian is presented. Unlike in the standard approach, the canonical momenta arising here are explicitely gauge-invariant and have a clear physical intepretation. The reduced symplectic form is equaivalent to the Souriau's form. This approach illustrates a new method of deriving equations of motion from field equations.Comment: LATEX, 15 page

    On the stability of Hamiltonian relative equilibria with non-trivial isotropy

    Full text link
    We consider Hamiltonian systems with symmetry, and relative equilibria with isotropy subgroup of positive dimension. The stability of such relative equilibria has been studied by Ortega and Ratiu and by Lerman and Singer. In both papers the authors give sufficient conditions for stability which require first determining a splitting of a subspace of the Lie algebra of the symmetry group, with different splittings giving different criteria. In this note we remove this splitting construction and so provide a more general and more easily computed criterion for stability. The result is also extended to apply to systems whose momentum map is not coadjoint equivariant

    On spin evolution in a time-dependent magnetic field: post-adiabatic corrections and geometric phases

    Full text link
    We examine both quantum and classical versions of the problem of spin evolution in a slowly varying magnetic field. Main attention is given to the first- and second-order adiabatic corrections in the case of in-plane variations of the magnetic field. While the first-order correction relates to the adiabatic Berry phase and Coriolis-type lateral deflection of the spin, the second-order correction is shown to be responsible for the next-order geometric phase and in-plain deflection. A comparison between different approaches, including the exact (non-adiabatic) geometric phase, is presented.Comment: 10 pages, 1 figure, to appear in Phys. Lett.

    Hidden symmetries in a gauge covariant approach, Hamiltonian reduction and oxidation

    Full text link
    Hidden symmetries in a covariant Hamiltonian formulation are investigated involving gauge covariant equations of motion. The special role of the Stackel-Killing tensors is pointed out. A reduction procedure is used to reduce the original phase space to another one in which the symmetries are divided out. The reverse of the reduction procedure is done by stages performing the unfolding of the gauge transformation followed by the Eisenhart lift in connection with scalar potentials.Comment: 15 pages; based on a talk at QTS-7 Conference, Prague, August 7-13, 201

    Semiclassical Dynamics of Dirac particles interacting with a Static Gravitational Field

    Full text link
    The semiclassical limit for Dirac particles interacting with a static gravitational field is investigated. A Foldy-Wouthuysen transformation which diagonalizes at the semiclassical order the Dirac equation for an arbitrary static spacetime metric is realized. In this representation the Hamiltonian provides for a coupling between spin and gravity through the torsion of the gravitational field. In the specific case of a symmetric gravitational field we retrieve the Hamiltonian previously found by other authors. But our formalism provides for another effect, namely, the spin hall effect, which was not predicted before in this context

    Transverse Shifts in Paraxial Spinoptics

    Full text link
    The paraxial approximation of a classical spinning photon is shown to yield an "exotic particle" in the plane transverse to the propagation. The previously proposed and observed position shift between media with different refractive indices is modified when the interface is curved, and there also appears a novel, momentum [direction] shift. The laws of thin lenses are modified accordingly.Comment: 3 pages, no figures. One detail clarified, some misprints corrected and references adde
    • …
    corecore