233 research outputs found

    Field theory conjecture for loop-erased random walks

    Full text link
    We give evidence that the functional renormalization group (FRG), developed to study disordered systems, may provide a field theoretic description for the loop-erased random walk (LERW), allowing to compute its fractal dimension in a systematic expansion in epsilon=4-d. Up to two loop, the FRG agrees with rigorous bounds, correctly reproduces the leading logarithmic corrections at the upper critical dimension d=4, and compares well with numerical studies. We obtain the universal subleading logarithmic correction in d=4, which can be used as a further test of the conjecture.Comment: 5 page

    Theory of Phase Ordering Kinetics

    Full text link
    The theory of phase ordering dynamics -- the growth of order through domain coarsening when a system is quenched from the homogeneous phase into a broken-symmetry phase -- is reviewed, with the emphasis on recent developments. Interest will focus on the scaling regime that develops at long times after the quench. How can one determine the growth laws that describe the time-dependence of characteristic length scales, and what can be said about the form of the associated scaling functions? Particular attention will be paid to systems described by more complicated order parameters than the simple scalars usually considered, e.g. vector and tensor fields. The latter are needed, for example, to describe phase ordering in nematic liquid crystals, on which there have been a number of recent experiments. The study of topological defects (domain walls, vortices, strings, monopoles) provides a unifying framework for discussing coarsening in these different systems.Comment: To appear in Advances in Physics. 85 pages, latex, no figures. For a hard copy with figures, email [email protected]

    An Algebraic Spin and Statistics Theorem

    Full text link
    A spin-statistics theorem and a PCT theorem are obtained in the context of the superselection sectors in Quantum Field Theory on a 4-dimensional space-time. Our main assumption is the requirement that the modular groups of the von Neumann algebras of local observables associated with wedge regions act geometrically as pure Lorentz transformations. Such a property, satisfied by the local algebras generated by Wightman fields because of the Bisognano-Wichmann theorem, is regarded as a natural primitive assumption.Comment: 15 pages, plain TeX, an error in the statement of a theorem has been corrected, to appear in Commun. Math. Phy

    β Decay and isomeric properties of neutron-rich Ca and Sc isotopes

    Get PDF
    The isomeric and β-decay properties of neutron-rich Sc53-57 and Ca53,54 nuclei near neutron number N=32 are reported, and the low-energy level schemes of Sc53,54,56 and Ti53-57 are presented. The low-energy level structures of the 21Sc isotopes are discussed in terms of the coupling of the valence 1f7/2 proton to states in the corresponding 20Ca cores. Implications with respect to the robustness of the N=32 subshell closure are discussed, as well as the repercussions for a possible N=34 subshell closure

    Collectivity at N=40 in neutron-rich Cr64

    Get PDF
    Be9-induced inelastic scattering of Fe62,64,66 and Cr60,62,64 was performed at intermediate beam energies. Excited states in Cr64 were measured for the first time. Energies and population patterns of excited states in these neutron-rich Fe and Cr nuclei are compared and interpreted in the framework of large-scale shell-model calculations in different model spaces. Evidence for increased collectivity and for distinct structural changes between the neighboring Fe and Cr isotopic chains near N=40 is presented

    In-beam γ -ray spectroscopy of Mn 63

    Get PDF
    Background: Neutron-rich, even-mass chromium and iron isotopes approaching neutron number N=40 have been important benchmarks in the development of shell-model effective interactions incorporating the effects of shell evolution in the exotic regime. Odd-mass manganese nuclei have received less attention, but provide important and complementary sensitivity to these interactions. Purpose: We report the observation of two new γ-ray transitions in Mn63, which establish the (9/2-) and (11/2-) levels on top of the previously known (7/2-) first-excited state. The lifetime for the (7/2-) and (9/2-) excited states were determined for the first time, while an upper limit could be established for the (11/2-) level. Method: Excited states in Mn63 have been populated in inelastic scattering from a Be9 target and in the fragmentation of Fe65. γγ coincidence relationships were used to establish the decay level scheme. A Doppler line-shape analysis for the Doppler-broadened (7/2-)→5/2-, (9/2-)→(7/2-), and (11/2-)→(9/2-) transitions was used to determine (limits for) the corresponding excited-state lifetimes. Results: The low-lying level scheme and the excited-state lifetimes were compared with large-scale shell-model calculations using different model spaces and effective interactions in order to isolate important aspects of shell evolution in this region of structural change. Conclusions: While the theoretical (7/2-) and (9/2-) excitation energies show little dependence on the model space, the calculated lifetime of the (7/2-) level and calculated energy of the (11/2-) level reveal the importance of including the neutron g9/2 and d5/2 orbitals in the model space. The LNPS effective shell-model interaction provides the best overall agreement with the new data

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio
    corecore