172 research outputs found

    Constructing the Equation of State of QCD in a functional QCD based scheme

    Full text link
    We construct the equation of state (EoS) of QCD based on the finite chemical potential information from the functional QCD approaches, with the assistance of the lattice QCD EoS. The obtained EoS is consistent with the up-to-date estimations of the QCD phase diagram, including a phase transition temperature at zero chemical potential of T=155T=155 MeV, the curvature of the transition line κ=0.016\kappa=0.016 and also a critical end point at (T,μB)=(118,600)(T,\mu_B)=(118, 600) MeV. In specific, the phase diagram mapping is achieved by incorporating the order parameters into the EoS, namely the dynamical quark mass for the chiral phase transition together with the Polyakov loop parameter for the deconfinement phase transition. We also implement the EoS in hydrodynamic simulations to compute the particle yields, ratios and collective flow, and find that our obtained EoS agrees well with the commonly used one based on the combination of lattice QCD simulation and hadron resonance gas model.Comment: 8 pages, 12 figure

    Imprecise probabilistic estimation of design floods with epistemic uncertainties

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.An imprecise probabilistic framework for design flood estimation is proposed on the basis of the Dempster-Shafer theory to handle different epistemic uncertainties from data, probability distribution functions and probability distribution parameters. These uncertainties are incorporated in cost-benefit analysis to generate the lower and upper bounds of the total cost for flood control, thus presenting improved information for decision making on design floods. Within the total cost bounds, a new robustness criterion is proposed to select a design flood that can tolerate higher levels of uncertainty. A variance decomposition approach is used to quantify individual and interactive impacts of the uncertainty sources on total cost. Results from three case studies, with 127-, 104- and 54-year flood data sets respectively, show that the imprecise probabilistic approach effectively combines aleatory and epistemic uncertainties from the various sources and provides upper and lower bounds of the total cost. Between the total cost and the robustness of design floods, a clear trade-off which is beyond the information that can be provided by the conventional minimum cost criterion is identified. The interactions among data, distributions and parameters have a much higher contribution than parameters to the estimate of the total cost. It is found that the contributions of the various uncertainty sources and their interactions vary with different flood magnitude, but remain roughly the same with different return periods. This study demonstrates that the proposed methodology can effectively incorporate epistemic uncertainties in cost-benefit analysis of design floods.This study was supported by the National Natural Science Foundation of China (Grant No. 51320105010 and 51279021). The first author gratefully acknowledges the financial support provided by the China Scholarship Council. The authors are deeply indebted to editors, Dr Francesco Serinaldi and another anonymous reviewer for their valuable time and constructive suggestions that greatly improved the quality of this paper. The data of Three Gorges were obtained from the China Three Gorges Corporation. The data of Biliu were obtained from the Biliu reservoir administration. The data of Harbin were obtained from the Harbin hydrology bureau. These data are available as in Supporting Information Data Set which includes Data Set S1, Data Set S2 and Data Set S3. Data Set S1 corresponds to Three Gorges; Data Set S2 corresponds to Biliu; Data Set S3 corresponds to Harbin

    Corrigendum to: The TianQin project: current progress on science and technology

    Get PDF
    In the originally published version, this manuscript included an error related to indicating the corresponding author within the author list. This has now been corrected online to reflect the fact that author Jun Luo is the corresponding author of the article

    Prevalence and trend of hepatitis C virus infection among blood donors in Chinese mainland: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood transfusion is one of the most common transmission pathways of hepatitis C virus (HCV). This paper aims to provide a comprehensive and reliable tabulation of available data on the epidemiological characteristics and risk factors for HCV infection among blood donors in Chinese mainland, so as to help make prevention strategies and guide further research.</p> <p>Methods</p> <p>A systematic review was constructed based on the computerized literature database. Infection rates and 95% confidence intervals (95% CI) were calculated using the approximate normal distribution model. Odds ratios and 95% CI were calculated by fixed or random effects models. Data manipulation and statistical analyses were performed using STATA 10.0 and ArcGIS 9.3 was used for map construction.</p> <p>Results</p> <p>Two hundred and sixty-five studies met our inclusion criteria. The pooled prevalence of HCV infection among blood donors in Chinese mainland was 8.68% (95% CI: 8.01%-9.39%), and the epidemic was severer in North and Central China, especially in Henan and Hebei. While a significant lower rate was found in Yunnan. Notably, before 1998 the pooled prevalence of HCV infection was 12.87% (95%CI: 11.25%-14.56%) among blood donors, but decreased to 1.71% (95%CI: 1.43%-1.99%) after 1998. No significant difference was found in HCV infection rates between male and female blood donors, or among different blood type donors. The prevalence of HCV infection was found to increase with age. During 1994-1995, the prevalence rate reached the highest with a percentage of 15.78% (95%CI: 12.21%-19.75%), and showed a decreasing trend in the following years. A significant difference was found among groups with different blood donation types, Plasma donors had a relatively higher prevalence than whole blood donors of HCV infection (33.95% <it>vs </it>7.9%).</p> <p>Conclusions</p> <p>The prevalence of HCV infection has rapidly decreased since 1998 and kept a low level in recent years, but some provinces showed relatively higher prevalence than the general population. It is urgent to make efficient measures to prevent HCV secondary transmission and control chronic progress, and the key to reduce the HCV incidence among blood donors is to encourage true voluntary blood donors, strictly implement blood donation law, and avoid cross-infection.</p

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
    corecore