Constructing the Equation of State of QCD in a functional QCD based scheme

Abstract

We construct the equation of state (EoS) of QCD based on the finite chemical potential information from the functional QCD approaches, with the assistance of the lattice QCD EoS. The obtained EoS is consistent with the up-to-date estimations of the QCD phase diagram, including a phase transition temperature at zero chemical potential of T=155T=155 MeV, the curvature of the transition line κ=0.016\kappa=0.016 and also a critical end point at (T,μB)=(118,600)(T,\mu_B)=(118, 600) MeV. In specific, the phase diagram mapping is achieved by incorporating the order parameters into the EoS, namely the dynamical quark mass for the chiral phase transition together with the Polyakov loop parameter for the deconfinement phase transition. We also implement the EoS in hydrodynamic simulations to compute the particle yields, ratios and collective flow, and find that our obtained EoS agrees well with the commonly used one based on the combination of lattice QCD simulation and hadron resonance gas model.Comment: 8 pages, 12 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions