116 research outputs found

    Alterations of NK cell phenotype during pregnancy in multiple sclerosis

    Get PDF
    In multiple sclerosis (MS), relapse rate is decreased by 70-80% in the third trimester of pregnancy. However, the underlying mechanisms driving this effect are poorly understood. Evidence suggests that CD56(bright) NK cell frequencies increase during pregnancy. Here, we analyze pregnancy-related NK cell shifts in a large longitudinal cohort of pregnant women with and without MS, and provide in-depth phenotyping of NK cells. In healthy pregnancy and pregnancy in MS, peripheral blood NK cells showed significant frequency shifts, notably an increase of CD56(bright) NK cells and a decrease of CD56(dim) NK cells toward the third trimester, indicating a general rather than an MS-specific phenomenon of pregnancy. Additional follow-ups in women with MS showed a reversal of NK cell changes postpartum. Moreover, high-dimensional profiling revealed a specific CD56(bright) subset with receptor expression related to cytotoxicity and cell activity (e.g., CD16(+) NKp46(high) NKG2D(high) NKG2A(high) phenotype) that may drive the expansion of CD56(bright) NK cells during pregnancy in MS. Our data confirm that pregnancy promotes pronounced shifts of NK cells toward the regulatory CD56(bright) population. Although exploratory results on in-depth CD56(bright) phenotype need to be confirmed in larger studies, our findings suggest an increased regulatory NK activity, thereby potentially contributing to disease amelioration of MS during pregnancy

    Utilization of COVID-19 Treatments and Clinical Outcomes among Patients with Cancer: A COVID-19 and Cancer Consortium (CCC19) Cohort Study.

    Get PDF
    Among 2,186 U.S. adults with invasive cancer and laboratory-confirmed SARS-CoV-2 infection, we examined the association of COVID-19 treatments with 30-day all-cause mortality and factors associated with treatment. Logistic regression with multiple adjustments (e.g., comorbidities, cancer status, baseline COVID-19 severity) was performed. Hydroxychloroquine with any other drug was associated with increased mortality versus treatment with any COVID-19 treatment other than hydroxychloroquine or untreated controls; this association was not present with hydroxychloroquine alone. Remdesivir had numerically reduced mortality versus untreated controls that did not reach statistical significance. Baseline COVID-19 severity was strongly associated with receipt of any treatment. Black patients were approximately half as likely to receive remdesivir as white patients. Although observational studies can be limited by potential unmeasured confounding, our findings add to the emerging understanding of patterns of care for patients with cancer and COVID-19 and support evaluation of emerging treatments through inclusive prospective controlled trials. SIGNIFICANCE: Evaluating the potential role of COVID-19 treatments in patients with cancer in a large observational study, there was no statistically significant 30-day all-cause mortality benefit with hydroxychloroquine or high-dose corticosteroids alone or in combination; remdesivir showed potential benefit. Treatment receipt reflects clinical decision-making and suggests disparities in medication access.This article is highlighted in the In This Issue feature, p. 1426

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Measurement of nuclear modification factors of Υ(1S), Υ(2S), and Υ(3S) mesons in PbPb collisions at √sNN = 5.02 TeV

    Get PDF
    corecore