27 research outputs found

    Incorporation of uranium into hematite during crystallization from ferrihydrite

    Get PDF
    Ferrihydrite was exposed to U(VI)-containing cement leachate (pH 10.5) and aged to induce crystallization of hematite. A combination of chemical extractions, TEM, and XAS techniques provided the first evidence that adsorbed U(VI) (≈3000 ppm) was incorporated into hematite during ferrihydrite aggregation and the early stages of crystallization, with continued uptake occurring during hematite ripening. Analysis of EXAFS and XANES data indicated that the U(VI) was incorporated into a distorted, octahedrally coordinated site replacing Fe(III). Fitting of the EXAFS showed the uranyl bonds lengthened from 1.81 to 1.87 Å, in contrast to previous studies that have suggested that the uranyl bond is lost altogether upon incorporation into hematite the results of this study both provide a new mechanistic understanding of uranium incorporation into hematite and define the nature of the bonding environment of uranium within the mineral structure. Immobilization of U(VI) by incorporation into hematite has clear and important implications for limiting uranium migration in natural and engineered environments. © 2014 American Chemical Society

    Reduced partition function ratios of iron and oxygen in goethite

    Get PDF
    First-principles calculations based on the density functional theory (DFT) with or without the addition of a Hubbard U correction, are performed on goethite in order to determine the iron and oxygen reduced partition function ratios (β-factors). The calculated iron phonon density of states (pDOS), force constant and β-factor are compared with reevaluated experimental β-factors obtained from Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements. The reappraisal of old experimental data is motivated by the erroneous previous interpretation of the low- and high-energy ends of the NRIXS spectrum of goethite and jarosite samples (Dauphas et al., 2012). Here the NRIXS data are analyzed using the SciPhon software that corrects for non-constant baseline. New NRIXS measurements also demonstrate the reproducibility of the results. Unlike for hematite and pyrite, a significant discrepancy remains between DFT, NRIXS and the existing Mössbauer-derived data. Calculations suggest a slight overestimation of the NRIXS signal possibly related to the baseline definition. The intrinsic features of the samples studied by NRIXS and Mössbauer spectroscopy may also contribute to the discrepancy (e.g., internal structural and/or chemical defects, microstructure, surface contribution). As for oxygen, DFT results indicate that goethite and hematite have similar β-factors, which suggests almost no fractionation between the two minerals at equilibrium

    Anatomy of a complex mineral replacement reaction: Role of aqueous redox, mineral nucleation, and ion transport properties revealed by an in-situ study of the replacement of chalcopyrite by copper sulfides

    No full text
    The fluid-driven transformation of chalcopyrite (CuFeS2) into Cu-rich sulfides (e.g., digenite, Cu1.8S; covellite, CuS; and chalcocite, Cu2S) is a complex mineral replacement reaction where the reaction pathway is controlled by the interplay between evolving mineral make-up, texture/porosity, and solution chemistry. This transformation was investigated in CuCl2 + H2SO4 solutions under mild hydrothermal conditions (180 to 300 °C); the reaction kinetics, nature of minerals formed, and oxidation states of aqueous Fe and Cu were followed in-situ in real-time using synchrotron powder X-ray diffraction (PXRD) and X-ray absorption spectroscopy (XAS). These results are corroborated by an analysis of the textures of reaction products from comparative ex-situ quench experiments. The in-situ and ex-situ experiments revealed that: (i) aqueous Cu2+ quickly reduced to Cu+ during chalcopyrite replacement in all experiments, and Fe dissolved as Fe2+; (ii) covellite was the first mineral to form, followed by digenite-high with delayed nucleation; and (iii) a non-quenchable hydrated Fe sulfate mineral (szomolnokite, FeSO4.H2O) formed at 240 °C at relatively low concentrations of added CuCl2, which supressed the formation of digenite-high. The quantitative mineral phase evolution retrieved using in-situ PXRD was modelled using a novel dual power law (dual Avrami approach). Avrami exponents revealed that chalcopyrite replacement proceeded initially via a 3-dimensional growth mechanism, followed by diffusion-controlled growth. This is consistent with initial formation of a porous covellite rim around chalcopyrite, confirmed by the observation of the ex-situ reaction products, followed by a second reaction stage where the transport properties of aqueous Fe (released from the chalcopyrite) and aqueous Cu (added from the initial solution) to and from the reaction front become the rate-limiting step; and these two kinetic stages exist even where covellite was the only replacement product. The activation energies calculated for these two kinetic stages were 42.9 ± 7.4 kJ mol−1 and 39.3 ± 13.1 kJ mol−1, respectively. We conclude that (i) the replacement of chalcopyrite by covellite and digenite proceeds via an interface coupled dissolution and reprecipitation mechanism; (ii) availabilities of aqueous Cu+ and of Fe2+ play a critical role in covellite nucleation and on the sequence of mineral precipitation during chalcopyrite replacement; the Cu+ to Cu2+ ratio is controlled by the kinetics of Cu2+ to Cu+ reduction, which increases with increasing temperature, and by the transport of Cu2+ through the daughter mineral to the reaction front, while Fe2+ availability is limited at high temperature by the formation of insoluble ferrous sulfate; and (iii) this reaction evolves from a bulk fluid-chemistry controlled reaction (initial formation of covellite) to an interface-controlled reaction (digenite-high or further transformation to covellite). The current findings highlight the complex feedback between Cu2+/Cu+ aqueous redox, mineral nucleation, and ion transport properties during replacement reactions, and the applicability of combined in-situ PXRD and XAS techniques in deciphering complex fluid-driven mineral replacement reactions

    Synchronous solid-state diffusion, dissolution-reprecipitation, and recrystallization leading to isotopic resetting: Insights from chalcopyrite replacement by copper sulfides

    No full text
    Reactions among minerals occur via solid-state diffusion or fluid-induced, interface-coupled dissolution-reprecipitation (ICDR). Both mechanisms can coexist under conditions where the rates of both processes are similar, depending mainly on the nature of the mineral, temperature, and fluid composition. To clarify the synergies between these reaction mechanisms, we investigated the replacement and recrystallization reactions of chalcopyrite in the presence of a 65Cu-enriched aqueous fluid. The replacement of chalcopyrite by secondary copper sulfides follows a paragenetic sequence, whereby chalcopyrite is initially replaced by covellite, and then by digenite, with some of the digenite replacing covellite in longer duration experiments. The replacement reactions proceed via ICDR along with solid-state diffusion of 65Cu from the fluid into product minerals, with both mechanisms occurring at similar rates. Over time, chalcopyrite is completely replaced, and the secondary copper sulfides attain isotopic equilibrium with the fluid. Depending on temperature, thermal history, and fluid-mineral ratio, the reaction products may preserve kinetic or equilibrium signatures. We have identified a new geochemical process of ‘porosity-aided recrystallization’, which may result in a re-equilibration or perturbation of mineral isotopic/trace element compositions due to exchanges between the mineral and fluid facilitated by extensive micro- to nano-scale porosity created by ICDR reactions. Porosity-aided recrystallization will affect any mineral-fluid system where mass transfers via solid-state diffusion and ICDR operate at similar rates, causing rapid (days-weeks) ‘resetting’ of the original isotopic abundances and trace element contents of the affected minerals. In copper sulfides, porosity-aided recrystallization occurs at lower temperatures (<300 °C) due to fast cation diffusion rates (log10D ≈ –13.6, 300 °C), but also takes place across other mineral systems where diffusion rates are faster at high temperatures. The open-system isotopic and trace element exchanges associated with porosity-aided recrystallization could lead to erroneous petrological interpretations, especially where these markers are used as a proxy for reconstructing geological evolution

    Recrystallization of Manganite (γ-MnOOH) and Implications for Trace Element Cycling

    No full text
    The recrystallization of Mn­(III,IV) oxides is catalyzed by aqueous Mn­(II) (Mn­(II)<sub>aq</sub>) during (bio)­geochemical Mn redox cycling. It is poorly understood how trace metals associated with Mn oxides (e.g., Ni) are cycled during such recrystallization. Here, we use X-ray absorption spectroscopy (XAS) to examine the speciation of Ni associated with Manganite (γ-Mn­(III)­OOH) suspensions in the presence or absence of Mn­(II)<sub>aq</sub> under variable pH conditions (pH 5.5 and 7.5). In a second set of experiments, we used a <sup>62</sup>Ni isotope tracer to quantify the amount of dissolved Ni that exchanges with Ni incorporated in the Manganite crystal structure during reactions in 1 mM Mn­(II)<sub>aq</sub> and in Mn­(II)-free solutions. XAS spectra show that Ni is initially sorbed on the Manganite mineral surface and is progressively incorporated into the mineral structure over time (13% after 51 days) even in the absence of dissolved Mn­(II). The amount of Ni incorporation significantly increases to about 40% over a period of 51 days when Mn­(II)<sub>aq</sub> is present in solution. Similarly, Mn­(II)<sub>aq</sub> promotes Ni exchange between Ni-substituted Manganite and dissolved Ni­(II), with around 30% of Ni exchanged at pH 7.5 over the duration of the experiment. No new mineral phases are detected following recrystallization as determined by X-ray diffraction and XAS. Our results reveal that Mn­(II)-catalyzed mineral recrystallization partitions Ni between Mn oxides and aqueous fluids and can therefore affect Ni speciation and mobility in the environment

    Fe(II)-catalyzed recrystallization of goethite revisited

    No full text
    © 2014 American Chemical Society. Results from enriched 57Fe isotope tracer experiments have shown that atom exchange can occur between structural Fe in Fe(III) oxides and aqueous Fe(II) with no formation of secondary minerals or change in particle size or shape. Here we derive a mass balance model to quantify the extent of Fe atom exchange between goethite and aqueous Fe(II) that accounts for different Fe pool sizes. We use this model to reinterpret our previous work and to quantify the influence of particle size and pH on extent of goethite exchange with aqueous Fe(II). Consistent with our previous interpretation, substantial exchange of goethite occurred at pH 7.5 (≈ 90%) and we observed little effect of particle size between nanogoethite (average size of 81 × 11 nm; ≈ 110 m2/g) and microgoethite (average size of 590 × 42 nm; ≈ 40 m2/g). Despite ≈90% of the bulk goethite exchanging at pH 7.5, we found no change in mineral phase, average particle size, crystallinity, or reactivity after reaction with aqueous Fe(II). At a lower pH of 5.0, no net sorption of Fe(II) was observed and significantly less exchange occurred accounting for less than the estimated proportion of surface Fe atoms in the particles. Particle size appears to influence the amount of exchange at pH 5.0 and we suggest that aggregation and surface area may play a role. Results from sequential chemical extractions indicate that 57Fe accumulates in extracted Fe(III) goethite components. Isotopic compositions of the extracts indicate that a gradient of 57Fe develops within the goethite with more accumulation of 57Fe occurring in the more easily extracted Fe(III) that may be nearer to the surface
    corecore