14 research outputs found

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Neural and Endocrine Mechanisms Mediating Noxious Stimulus-Induced Inhibition of Bradykinin Plasma Extravasation in the Rat 1

    No full text
    ABSTRACT We studied the mechanisms by which activation of primary afferent nociceptors inhibits bradykinin-induced plasma extravasation in the rat. First, capsaicin, administered into the plantar surface of the hindpaw, dose-dependently inhibited bradykinininduced plasma extravasation in the knee joint, a site distant from the noxious stimulus. The inhibitory effect of capsaicin was markedly attenuated after T 12 /L 1 spinal transection combined with lumbar preganglionic sympathectomy, which interrupts ascending spinal tracts to rostral sites and to spinal sympathetic and sympathoadrenal outflow. Second, interruption of the sympathetics (cutting the L 1-3 white rami) or surgical adrenal denervation significantly attenuated capsaicin-induced inhibition of bradykinin-induced plasma extravasation. Interruption of the sympathoadrenal pathway produced the largest attenuation. Lesioning of the hypothalamic-pituitary-adrenal axis did not affect the inhibitory action of capsaicin. Third, intra-articular perfusion with phentolamine (10 Ϫ5 M, an ␣-adrenoceptor antagonist), propranolol (10 Ϫ5 M, a ␤-adrenoceptor antagonist), and naloxone (10 Ϫ5 M, an opioidergic receptor antagonist) each attenuated the inhibitory action of capsaicin. Propranolol and naloxone produced the largest attenuation. Blocking glucocorticoid receptors (RU-38,486, 30 mg/kg s.c.) did not affect the inhibitory action of intraplantar capsaicin. Fourth, the magnitude of the attenuation of capsaicin-induced inhibition of bradykinin-induced plasma extravasation after a combined treatment of surgical lumbar sympathetic decentralization with intra-articular phentolamine or surgical adrenal denervation with intra-articular propranolol or naloxone was similar to each of the surgical or pharmacological treatments of the same axis alone. These results support the suggestion that two neural/endocrine circuits, sympathoadrenal and sympathetic, account for most, if not all, of nociceptor activity-induced inhibition of bradykinin-induced plasma extravasation produced by capsaicin

    Contribution of adrenal hormones to nicotine-induced inhibition of synovial plasma extravasation in the rat

    No full text
    1. In this study, we examined the mechanism(s) by which s.c. nicotine inhibits synovial plasma extravasation. We found that nicotine dose-dependently inhibited bradykinin (BK)- and platelet activating factor (PAF)-induced plasma extravasation. 2. The effect of nicotine on both BK- and PAF-induced plasma extravasation was attenuated by adrenal medullectomy. ICI-118,551 (a selective β(2)-adrenoceptor blocker) (30 μg ml(−1), intra-articularly) significantly attenuated the inhibitory action of high-dose (1 mg kg(−1)) nicotine on BK-induced plasma extravasation without affecting the inhibition by low- (0.01 μg kg(−1)) dose nicotine or that on PAF-induced plasma extravasation by nicotine at any dose. This suggested that β(2)-adrenoceptors mediate the inhibitory actions of high-dose, but not low-dose, nicotine. We also found that systemic naloxone (an opioid receptor antagonist) (two hourly injections of 1 mg kg(−1), i.p.) attenuated the inhibitory action produced by all doses of nicotine on BK- or PAF-induced plasma extravasation, suggesting the contribution of endogenous opioids. 3. RU-38,486 (a glucocorticoid receptor antagonist) (30 mg kg(−1), s.c.) and metyrapone (a glucocorticoid synthesis inhibitor) (two hourly injections of 100 mg kg(−1), i.p.) both attenuated the action of high-dose nicotine without affecting that of low-dose nicotine. 4. Spinal mecamylamine (a nicotinic receptor antagonist) (0.025 mg kg(−1), intrathecally, i.t.) attenuated the action of high-dose, but not low-dose, nicotine, suggesting that part of the action of high-dose nicotine is mediated by spinal nicotinic receptors. 5. Combined treatment with ICI-118,551, naloxone and RU-38,486 attenuated the action of low-dose nicotine by an amount similar to that produced by naloxone alone but produced significantly greater attenuation of the effect of high-dose nicotine when compared to the action of any of the three antagonists alone

    Nociceptive neuroendocrine negative feedback control of neurogenic inflammation activated by capsaicin in the rat paw: role of the adrenal medulla

    No full text
    Recently we have found that inhibition of bradykinin-induced synovial plasma extravasation by transcutaneous electrical stimulation at strengths which excite unmyelinated afferent axons is mediated by the hypothalamo-pituitary-adrenal axis.Here we tested whether stimulation of nociceptors in the rat paw by intradermally injected capsaicin inhibits bradykinin-induced synovial plasma extravasation and whether this inhibition is mediated by the hypothalamo-pituitary-adrenal or sympatho-adrenal axis. Furthermore, we tested whether inhibition of bradykinin-induced plasma extravasation generated by intraperitoneally injected capsaicin, which preferentially excites visceral afferents, is mediated by the hypothalamo-pituitary-adrenal or sympatho-adrenal axis. We used normal rats, subdiaphragmatically vagotomized rats, rats with denervated adrenal medullae and rats with acutely transected spinal cords at the segmental levels T1/T2 or T12/L1.Injection of capsaicin into the plantar or palmar surface of the paws produced a depression of bradykinin-induced plasma extravasation. The inhibition elicited from the forepaw was larger than that from the hindpaw.The inhibition of bradykinin-induced plasma extravasation elicited from both paws was potentiated by subdiaphragmatic vagotomy.Denervation of the adrenal medullae abolished the inhibitory effect of intradermal capsaicin in vagus-intact and in vagotomized animals.After spinalization at the segmental level T1/T2, capsaicin injected into the forepaw did not depress bradykinin-induced plasma extravasation either in vagus-intact or in vagotomized animals. Capsaicin injected into the hindpaw in these spinalized animals produced a small depression. After spinalization at the segmental level T12/L1 no depression was produced by capsaicin injected into the hindpaw.Depression of bradykinin-induced plasma extravasation generated by intraperitoneal injection of capsaicin in vagus-intact and in vagotomized animals was also abolished or attenuated after denervation of the adrenal medullae. This shows that this depression was also largely dependent on the activation of the sympatho-adrenal system.We conclude that depression of bradykinin-induced plasma extravasation during stimulation of nociceptors by capsaicin is mediated predominantly by the sympathoadrenal pathway. This finding differs from the inhibitory mechanism of depression of bradykinin-induced plasma extravasation generated by cutaneous electrical stimulation, which is mediated by the hypothalamo-pituitary-adrenal axis

    Observation of the decay D_(s)⁺ → ωπ⁺η

    No full text
    Using 7.33 fb−1 of e+e− collision data collected by the BESIII detector at center-of-mass energies between 4.128 and 4.226~GeV, we observe for the first time the decay D±s→ωπ±η with a statistical significance of 7.6σ. The measured branching fraction of this decay is (0.54±0.12±0.04)%, where the first uncertainty is statistical and the second is systematic

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore