415 research outputs found

    Investigating prostate cancer tumour-stroma interactions - clinical and biological insights from an evolutionary game

    Get PDF
    BACKGROUND: Tumours are made up of a mixed population of different types of cells that include normal structures as well as ones associated with the malignancy, and there are multiple interactions between the malignant cells and the local microenvironment. These intercellular interactions, modulated by the microenvironment, effect tumour progression and represent a largely under appreciated therapeutic target. We use observations of primary tumor biology from prostate cancer to extrapolate a mathematical model: specifically; it has been observed that in prostate cancer three disparate cellular outcomes predominate: (i) the tumour remains well differentiated and clinically indolent - in this case the local stromal cells may act to restrain the growth of the cancer; (ii) early in its genesis the tumour acquires a highly malignant phenotype, growing rapidly and displacing the original stromal population (often referred to as small cell prostate cancer) - these less common aggressive tumours are relatively independent of the local microenvironment; and, (iii) the tumour co-opts the local stroma - taking on a classic stromagenic phenotype where interactions with the local microenvironment are critical to the cancer growth. METHODS: We present an evolutionary game theoretical construct that models the influence of tumour-stroma interactions in driving these outcomes. We consider three characteristic and distinct cellular populations: stromal cells, tumour cells that are self-reliant in terms of microenvironmental factors and tumour cells that depend on the environment for resources but can also co-opt stroma. 
RESULTS: Using evolutionary game theory we explore a number of different scenarios that elucidate the impact of tumour-stromal interactions on the dynamics of prostate cancer growth and progression and how different treatments in the metastatic setting can affect different types of tumors.
CONCLUSIONS: The tumour microenvironment plays a crucial role selecting the traits of the tumour cells that will determine prostate cancer progression. Equally important, treatments like hormone therapy affect the selection of these cancer phenotypes making it very important to understand how they impact prostate cancer’s somatic evolution

    Convective injection and photochemical decay of peroxides in the tropical upper troposphere: Methyl iodide as a tracer of marine convection

    Get PDF
    The convective injection and subsequent fate of the peroxides H2O2 and CH3OOH in the upper troposphere is investigated using aircraft observations from the NASA Pacific Exploratory Mission‐Tropics A (PEM‐Tropics A) over the South Pacific up to 12 km altitude. Fresh convective outflow is identified by high CH3I concentrations; CH3I is an excellent tracer of marine convection because of its relatively uniform marine boundary layer concentration, relatively well‐defined atmospheric lifetime against photolysis, and high sensitivity of measurement. We find that mixing ratios of CH3OOH in convective outflow at 8–12 km altitude are enhanced on average by a factor of 6 relative to background, while mixing ratios of H2O2 are enhanced by less than a factor of 2. The scavenging efficiency of H2O2 in the precipitation associated with deep convection is estimated to be 55–70%. Scavenging of CH3OOH is negligible. Photolysis of convected peroxides is a major source of the HOx radical family (OH + peroxy radicals) in convective outflow. The timescale for decay of the convective enhancement of peroxides in the upper troposphere is determined using CH3I as a chemical clock and is interpreted using photochemical model calculations. Decline of CH3OOH takes place on a timescale of a 1–2 days, but the resulting HOx converts to H2O2, so H2O2 mixing ratios show no decline for ∼5 days following a convective event. The perturbation to HOx at 8–12 km altitude from deep convective injection of peroxides decays on a timescale of 2–3 days for the PEM‐Tropics A conditions

    Origin of Ozone NO(x) in the Tropical Troposphere: A Photochemical Analysis of Aircraft Observations Over the South Atlantic Basin

    Get PDF
    The photochemistry of the troposphere over the South Atlantic basin is examined by modeling of aircraft observations up to 12-km altitude taken during the TRACE A expedition in September-October 1992. A close balance is found in the 0 to 12-km column between photochemical production and loss Of O3, with net production at high altitudes compensating for weak net loss at low altitudes. This balance implies that O3 concentrations in the 0-12 km column can be explained solely by in situ photochemistry; influx from the stratosphere is negligible. Simulation of H2O2, CH3OOH, and CH2O concentrations measured aboard the aircraft lends confidence in the computations of O3 production and loss rates, although there appears to be a major gap in current understanding of CH2O chemistry in the marine boundary layer. The primary sources of NO(x) over the South Atlantic Basin appear to be continental (biomass burning, lightning, soils). There is evidence that NO(x) throughout the 0 to 12-km column is recycled from its oxidation products rather than directly transported from its primary sources. There is also evidence for rapid conversion of HNO3 to NO(x) in the upper troposphere by a mechanism not included in current models. A general representation of the O3 budget in the tropical troposphere is proposed that couples the large scale Walker circulation and in situ photochemistry. Deep convection in the rising branches of the Walker circulation injects NO(x) from combustion, soils, and lightning to the upper troposphere, leading to O3 production; eventually, the air subsides and net O3 loss takes place in the lower troposphere, closing the O3 cycle. This scheme implies a great sensitivity of the oxidizing power of the atmosphere to NO(x) emissions in the tropics

    Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

    Get PDF
    Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change

    Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic

    Get PDF
    Photochemistry occuring in biomass burning plumes over the tropical south Atlantic is analyzed using data collected during the Transport and Atmospheric Chemistry Near the Equator‐Atlantic aircraft expedition conducted during the tropical dry season in September 1992 and a photochemical point model. Enhancement ratios (ΔY/ΔX, where Δ indicates the enhancement of a compound in the plume above the local background mixing ratio, Y are individual hydrocarbons, CO, O3, N2O, HNO3, peroxyacetyl nitrate (PAN), CH2O, acetone, H2O2, CH3OOH, HCOOH, CH3COOH or aerosols and X is CO or CO2) are reported as a function of plume age inferred from the progression of Δnon‐methane hydrocarbons/ΔCO enhancement ratios. Emission, formation, and loss of species in plumes can be diagnosed from progression of enhancement ratios from fresh to old plumes. O3 is produced in plumes over at least a 1 week period with mean ΔO3/ΔCO = 0.7 in old plumes. However, enhancement ratios in plumes can be influenced by changing background mixing ratios and by photochemical loss of CO. We estimate a downward correction of ∼20% in enhancement ratios in old plumes relative to ΔCO to correct for CO loss. In a case study of a large persistent biomass burning plume at 4‐km we found elevated concentrations of PAN in the fresh plume. The degradation of PAN helped maintain NOx mixing ratios in the plume where, over the course of a week, PAN was converted to HNO3. Ozone production in the plume was limited by the availability of NOx, and because of the short lifetime of O3 at 4‐km, net ozone production in the plume was negligible. Within the region, the majority of O3 production takes place in air above median CO concentration, indicating that most O3 production occurs in plumes. Scaling up from the mean observed ΔO3/ΔCO in old plumes, we estimate a minimum regional O3 production of 17×1010molecules O3 cm−2 s−1. This O3 production rate is sufficient to fully explain the observed enhancement in tropospheric O3 over the tropical South Atlantic during the dry season
    corecore