10 research outputs found

    Reward, learning and games

    Get PDF
    The link between reward and learning has chiefly been studied scientifically in the context of reinforcement learning. This type of learning, which relies upon midbrain dopaminergic response, differs greatly from the learning valued by educators, which typically involves declarative memory formation. However, with recent insights regarding the modulation of hippocampal function by midbrain dopamine, scientific understanding of the midbrain response to reward may be becoming more relevant to education. Here, we consider the potential for our current understanding of reward to inform educational learning, and consider its implications for game-like interventions in the classroom

    Status of the BONuS12 Radial Time Projection Chamber

    No full text
    International audiencePart of the experimental program in Hall B of the Jefferson Lab, Virginia, USA is dedicated to studying neutron structure functions using deep inelastic scattering on nuclei. For this purpose, the BONuS12 experiment will detect low momentum recoil protons in coincidence with scattered electrons. The protons will be detected by a second-generation Radial Time Projection Chamber (RTPC) using triple Gas Electron Multiplier foils for amplification while the scattered electrons will be detected by the CLAS12 spectrometer installed in Hall B. The following article presents the status of the BONuS12 RTPC detector that will take data within the next 2 years. The main improvements made from the previous BONuS RTPC: the new electronics and mounting process are presented. We also detail some aspect of the gas simulation

    Expectation-driven novelty effects in episodic memory.

    No full text
    From PubMed via Jisc Publications RouterHistory: received 2020-12-29, revised 2021-04-22, accepted 2021-05-23Publication status: aheadofprintNovel and unexpected stimuli are often prioritised in memory, given their inherent salience. Nevertheless, not all forms of novelty show such an enhancement effect. Here, we discuss the role expectation plays in modulating the way novelty affects memory processes, circuits, and subsequent performance. We first review independent effects of expectation on memory, and then consider how different types of novelty are characterised by expectation. We argue that different types of novelty defined by expectation implicate differential neurotransmission in memory formation brain regions and may also result in the creation of different types of memory. Contextual novelty, which is unexpected by definition, is often associated with better recollection, supported by dopaminergic-hippocampal interactions. On the other hand, expected stimulus novelty is supported by engagement of medial temporal cortices, as well as the hippocampus, through cholinergic modulation. Furthermore, when expected stimulus novelty results in enhanced memory, it is predominantly driven by familiarity. The literature reviewed here highlights the complexity of novelty-sensitive memory systems, the distinction between types of novelty, and how they are differentially affected by expectancy. [Abstract copyright: Copyright © 2021 Elsevier Inc. All rights reserved.

    Influence of reward motivation on human declarative memory

    No full text

    CMS TriDAS project: Technical Design Report, Volume 1: The Trigger Systems

    No full text
    corecore