279 research outputs found

    A developmental model of number representation

    Get PDF
    We delineate a developmental model of number representations. Notably, developmental dyscalculia (DD) is rarely associated with an all-or-none deficit in numerosity processing as would be expected if assuming abstract number representations. Finally, we suggest that the "generalist genes” view might be a plausible - though thus far speculative - explanatory framework for our model of how number representations develo

    Rechenstörungen im Kindesalter

    Get PDF
    Zusammenfassung: Die Prävalenz umschriebener Rechenstörungen ist etwa ebenso hoch wie die der Lese-Rechtschreib-Störungen. Komorbide psychische Störungen, v.a. Ängste, depressive Symptome und ADHD, sind besonders häufig. Die Entstehungs- und Verlaufsbedingungen sind noch weniger gut erforscht als bei der Legasthenie. Spezifisch Zahlen verarbeitende Hirnfunktionen sind sowohl sprachlich als auch visuell-räumlich determiniert und in verschiedenen Hirnregionen lokalisiert. Es kann davon ausgegangen werden, dass bei Kindern mit Rechenstörungen die Prozesse des Aufbaus und der Vernetzung entsprechender neuronaler Strukturen durch Einflüsse aus Anlage und Umwelt behindert werden. Daraus resultieren unterschiedliche Subtypen von mathematischen Lernschwierigkeiten. Individuell angepasste, möglichst schulnahe Therapie- und Fördermaßnahmen müssen auf einer frühzeitigen, inhaltsspezifischen und neuropsychologischen Diagnostik basiere

    Mathematics anxiety—where are we and where shall we go?

    Full text link
    In this paper, we discuss several largely undisputed claims about mathematics anxiety (MA) and propose where MA research should focus, including theoretical clarifications on what MA is and what constitutes its opposite pole; discussion of construct validity, specifically relations between self-descriptive, neurophysiological, and cognitive measures; exploration of the discrepancy between state and trait MA and theoretical and practical consequences; discussion of the prevalence of MA and the need for establishing external criteria for estimating prevalence and a proposal for such criteria; exploration of the effects of MA in different groups, such as highly anxious and high math–performing individuals; classroom and policy applications of MA knowledge; the effects of MA outside educational settings; and the consequences of MA on mental health and well-being

    Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study

    Get PDF
    BACKGROUND: Developmental dyscalculia (DD) is a specific learning disability affecting the acquisition of mathematical skills in children with otherwise normal general intelligence. The goal of the present study was to examine cerebral mechanisms underlying DD. METHODS: Eighteen children with DD aged 11.2 ± 1.3 years and twenty age-matched typically achieving schoolchildren were investigated using functional magnetic resonance imaging (fMRI) during trials testing approximate and exact mathematical calculation, as well as magnitude comparison. RESULTS: Children with DD showed greater inter-individual variability and had weaker activation in almost the entire neuronal network for approximate calculation including the intraparietal sulcus, and the middle and inferior frontal gyrus of both hemispheres. In particular, the left intraparietal sulcus, the left inferior frontal gyrus and the right middle frontal gyrus seem to play crucial roles in correct approximate calculation, since brain activation correlated with accuracy rate in these regions. In contrast, no differences between groups could be found for exact calculation and magnitude comparison. In general, fMRI revealed similar parietal and prefrontal activation patterns in DD children compared to controls for all conditions. CONCLUSION: In conclusion, there is evidence for a deficient recruitment of neural resources in children with DD when processing analog magnitudes of numbers

    Does It Count? Pre-School Children’s Spontaneous Focusing on Numerosity and Their Development of Arithmetical Skills at School

    Full text link
    BACKGROUND Children's spontaneous focusing on numerosity (SFON) is related to numerical skills. This study aimed to examine (1) the developmental trajectory of SFON and (2) the interrelations between SFON and early numerical skills at pre-school as well as their influence on arithmetical skills at school. METHOD Overall, 1868 German pre-school children were repeatedly assessed until second grade. Nonverbal intelligence, visual attention, visuospatial working memory, SFON and numerical skills were assessed at age five (M = 63 months, Time 1) and age six (M = 72 months, Time 2), and arithmetic was assessed at second grade (M = 95 months, Time 3). RESULTS SFON increased significantly during pre-school. Path analyses revealed interrelations between SFON and several numerical skills, except number knowledge. Magnitude estimation and basic calculation skills (Time 1 and Time 2), and to a small degree number knowledge (Time 2), contributed directly to arithmetic in second grade. The connection between SFON and arithmetic was fully mediated by magnitude estimation and calculation skills at pre-school. CONCLUSION Our results indicate that SFON first and foremost influences deeper understanding of numerical concepts at pre-school and-in contrast to previous findings -affects only indirectly children's arithmetical development at school

    Taking a Closer Look: The Relationship between Pre-School Domain General Cognition and School Mathematics Achievement When Controlling for Intelligence

    Full text link
    Intelligence, as well as working memory and attention, affect the acquisition of mathematical competencies. This paper aimed to examine the influence of working memory and attention when taking different mathematical skills into account as a function of children's intellectual ability. Overall, intelligence, working memory, attention and numerical skills were assessed twice in 1868 German pre-school children (t1, t2) and again at 2nd grade (t3). We defined three intellectual ability groups based on the results of intellectual assessment at t1 and t2. Group comparisons revealed significant differences between the three intellectual ability groups. Over time, children with low intellectual ability showed the lowest achievement in domain-general and numerical and mathematical skills compared to children of average intellectual ability. The highest achievement on the aforementioned variables was found for children of high intellectual ability. Additionally, path modelling revealed that, depending on the intellectual ability, different models of varying complexity could be generated. These models differed with regard to the relevance of the predictors (t2) and the future mathematical skills (t3). Causes and conclusions of these findings are discussed

    Development of a Possible General Magnitude System for Number and Space

    Get PDF
    There is strong evidence for a link between numerical and spatial processing. However, whether this association is based on a common general magnitude system is far from conclusive and the impact of development is not yet known. Hence, the present study aimed to investigate the association between discrete non-symbolic number processing (comparison of dot arrays) and continuous spatial processing (comparison of angle sizes) in children between the third and sixth grade (N = 367). Present findings suggest that the processing of comparisons of number of dots or angle are related to each other, but with angle processing developing earlier and being more easily comparable than discrete number representations for children of this age range. Accordingly, results favor the existence of a more complex underlying magnitude system consisting of dissociated but closely interacting representations for continuous and discrete magnitudes

    Dyscalculia from a developmental and differential perspective

    Get PDF
    Developmental dyscalculia (DD) and its treatment are receiving increasing research attention. A PsychInfo search for peer-reviewed articles with dyscalculia as a title word reveals 31 papers published from 1991–2001, versus 74 papers published from 2002–2012. Still, these small counts reflect the paucity of research on DD compared to dyslexia, despite the prevalence of mathematical difficulties. In the UK, 22% of adults have mathematical difficulties sufficient to impose severe practical and occupational restrictions (Bynner and Parsons, 1997; National Center for Education Statistics, 2011). It is unlikely that all of these individuals with mathematical difficulties have DD, but criteria for defining and diagnosing dyscalculia remain ambiguous (Mazzocco and Myers, 2003). What is treated as DD in one study may be conceptualized as another form of mathematical impairment in another study. Furthermore, DD is frequently—but, we believe, mistakenly- considered a largely homogeneous disorder. Here we advocate a differential and developmental perspective on DD focused on identifying behavioral, cognitive, and neural sources of individual differences that contribute to our understanding of what DD is and what it is not
    corecore