1,050 research outputs found

    A revival in façades: Textile reinforced concrete panels are light, safe and aesthetically pleasing

    Get PDF
    Textile reinforced concrete was developed in recent years into a construction technique that has its benefits and advantages in applications where conventional types of reinforcement have their limits. The current, minimum slab thickness for steel-reinforced concrete façade slabs is 7.0 cm; this is due to the minimum, required concrete cover to ensure adequate corrosion protection. Façade slab anchors for these slab thicknesses are building authority approved. As corrosion protection is not an issue for textile reinforced concrete, the minimum thickness for the concrete cover can be significantly reduced. The requirement for component thickness is now determined by the load-bearing capacity and by production-related boundary conditions. For practical building reasons, panel thicknesses of 3.0 cm have proven to be the best choice. Compared to steel-reinforced façade panels, this is a weight and thickness reduction of almost 60%. Thin concrete elements are of great interest in cases when the thickness or the weight of the panels is largely limited e.g. because of adjoining concrete elements in renovation or upgrade projects, retrofitting or improvements. Compared to other building materials, concrete has characteristic advantages in building physics and fire protection properties, irrespective of the thickness. Obviously, minimal thicknesses place extra demands on planning and construction. Especially effects on concrete, punching, splitting and concrete breakout must be examined in experiments. This is an overview of calculation and test methods. Results are provided to show the bearing behaviour of fixings in thin, textile reinforced concrete slabs. The design rules are explained and the results are illustrated

    Molecular characterization of polar organosulfates in secondary organic aerosol from the green leaf volatile 3-Z-hexenal

    Get PDF
    Evidence is provided That the green leaf volatiles 3-Z- hexenal serves as a precursor for biogenic secondary organic aersol through the formation of polar organosulfates (Os) with molecular weight (MW) 226. The MW 226 C-6-OSs were Chemically elucidated, along with structurally similar MW 212 C-5-OSs, whose biogenic precursor is likely related to 3-Z-hexenal but still remains unknown. The MW: 226 and 212 OSs have a substantial abundance in ambient fine aerosol from K-puszta, Hungary, which is comparable to that of the isoprene-related MW 216 OSs, known to be formed: through sulfation of C-5-epoxydiols, second-generation gas-phase photooxidation products of isoprene. Using detailed interpretation of negative-ion electrospray ionization mass spectral data, the MW 226, compounds are assigned to isomeric sulfate esters of 3,4-dihydroxyhex-5-enoic acid with the sulfate group located or C-4 position. Two MW 212 compounds present in: ambient fine aerosol are attributed to isomeric sulfate :esters of 2,3-dihydroxypent-4-enoic acid, of which two are sulfated at C-3 and one is sulfated at C-2. The formation of the MW 226 :OSs is tentatively explained through photooxidation of 3-Z-hexenal in, the gas phase, resulting in alkoxy radical, followed by a rearrangement and subsequent sulfation of the epoxy group in the particle phase

    Structural Rearrangements of a Dodecameric Ketol-Acid Reductoisomerase Isolated from a Marine Thermophilic Methanogen

    Get PDF
    Ketol-acid reductoisomerase (KARI) orchestrates the biosynthesis of branched-chain amino acids, an elementary reaction in prototrophic organisms as well as a valuable process in biotechnology. Bacterial KARIs belonging to class I organise as dimers or dodecamers and were intensively studied to understand their remarkable specificity towards NADH or NADPH, but also to develop antibiotics. Here, we present the first structural study on a KARI natively isolated from a methanogenic archaea. The dodecameric structure of 0.44-MDa was obtained in two different conformations, an open and close state refined to a resolution of 2.2-Å and 2.1-Å, respectively. These structures illustrate the conformational movement required for substrate and coenzyme binding. While the close state presents the complete NADP bound in front of a partially occupied Mg2+-site, the Mg2+-free open state contains a tartrate at the nicotinamide location and a bound NADP with the adenine-nicotinamide protruding out of the active site. Structural comparisons show a very high conservation of the active site environment and detailed analyses point towards few specific residues required for the dodecamerisation. These residues are not conserved in other dodecameric KARIs that stabilise their trimeric interface differently, suggesting that dodecamerisation, the cellular role of which is still unknown, might have occurred several times in the evolution of KARIs

    Synthesis and Assembly of a Novel Glycan Layer in Myxococcus xanthus Spores

    Get PDF
    Myxococcus xanthus is a Gram-negative deltaproteobacterium that has evolved the ability to differentiate into metabolically quiescent spores that are resistant to heat and desiccation. An essential feature of the differentiation processes is the assembly of a rigid, cell wall-like spore coat on the surface of the outer membrane. In this study, we characterize the spore coat composition and describe the machinery necessary for secretion of spore coat material and its subsequent assembly into a stress-bearing matrix. Chemical analyses of isolated spore coat material indicate that the spore coat consists primarily of short 1–4- and 1–3-linked GalNAc polymers that lack significant glycosidic branching and may be connected by glycine peptides. We show that 1–4-linked glucose (Glc) is likely a minor component of the spore coat with the majority of the Glc arising from contamination with extracellular polysaccharides, O-antigen, or storage compounds. Neither of these structures is required for the formation of resistant spores. Our analyses indicate the GalNAc/Glc polymer and glycine are exported by the ExoA-I system, a Wzy-like polysaccharide synthesis and export machinery. Arrangement of the capsular-like polysaccharides into a rigid spore coat requires the NfsA–H proteins, members of which reside in either the cytoplasmic membrane (NfsD, -E, and -G) or outer membrane (NfsA, -B, and -C). The Nfs proteins function together to modulate the chain length of the surface polysaccharides, which is apparently necessary for their assembly into a stress-bearing matrix

    Assessment of bilateral shoulder range of motion in firefighter trainees

    Get PDF
    Firefighting is innately a dangerous profession. Many essential tasks that firefighters must perform involve repetitive overhead motions, which can place stress on the shoulder joint. Unpredictable environments paired with potentially biomechanically compromising movements of the shoulder put this population at an increased risk of injury. The purpose of this study was to assess bilateral shoulder range of motion (ROM) of firefighter trainees. Retrospective data for 30 male firefighter trainees (age 28.4 +/- 5.47 yrs.; height 175.18 +/- 33.48 cm; weight 86.4 +/- 10.92 kg) were analyzed. Data included demographic (age), anthropometrics (height and weight), and select movement pattern (shoulder abduction, shoulder horizontal abduction, shoulder external rotation, shoulder internal rotation, shoulder flexion, and shoulder extension) range of motion information. Firefighter trainees' range of motion measures differed significantly from normative data, especially shoulder external rotation, which yielded the least amount of trainees within normal range and the most trainees below normal range. The firefighter trainees' tendency to differ from normal range of motion suggests that this population could benefit from a movement assessment in order to identify those individuals with a potentially increased risk of injury

    Components of Behavioral Activation Therapy for Depression Engage Specific Reinforcement Learning Mechanisms in a Pilot Study

    Get PDF
    Background: Behavioral activation is an evidence-based treatment for depression. Theoretical considerations suggest that treatment response depends on reinforcement learning mechanisms. However, which reinforcement learning mechanisms are engaged by and mediate the therapeutic effect of behavioral activation remains only partially understood, and there are no procedures to measure such mechanisms. Objective: To perform a pilot study to examine whether reinforcement learning processes measured through tasks or self-report are related to treatment response to behavioral activation. Method: The pilot study enrolled 13 outpatients (12 completers) with major depressive disorder, from July of 2018 through February of 2019, into a nine-week trial with BA. Psychiatric evaluations, decision-making tests and self-reported reward experience and anticipations were acquired before, during and after the treatment. Task and self-report data were analysed by using reinforcement-learning models. Inferred parameters were related to measures of depression severity through linear mixed effects models. Results: Treatment effects during different phases of the therapy were captured by specific decision-making processes in the task. During the weeks focusing on the active pursuit of reward, treatment effects were more pronounced amongst those individuals who showed an increase in Pavlovian appetitive influence. During the weeks focusing on the avoidance of punishments, treatment responses were more pronounced in those individuals who showed an increase in Pavlovian avoidance. Self-reported anticipation of reinforcement changed according to formal RL rules. Individual differences in the extent to which learning followed RL rules related to changes in anhedonia. Conclusions: In this pilot study both task-and self-report-derived measures of reinforcement learning captured individual differences in treatment response to behavioral activation. Appetitive and aversive Pavlovian reflexive processes appeared to be modulated by separate psychotherapeutic interventions, and the modulation strength covaried with response to specific interventions. Self-reported changes in reinforcement expectations are also related to treatment response

    Green-Emissive Zn2+ Complex Supported by a Macrocyclic Schiff-Base/Calix[4]arene-Ligand: Crystallographic and Spectroscopic Characterization

    Get PDF
    The macrocyclic calix[4]arene ligand H2L comprises two non-fluorescent 2,6-bis-(iminomethyl)phenolate chromophores, which show a chelation-enhanced fluorescence enhancement upon Zn2+ ion complexation. Macrocyclic [ZnL] complexes aggregate in the absence of external coligands via intermolecular Zn−N bonds to give dimeric [ZnL]2 structures comprising two five-coordinated Zn2+ ions. The absorption and emission wavelengths are bathochromically shifted upon going from the liquid (λmax,abs (CH2Cl2)=404 nm, λmax,em (CH2Cl2)=484 nm) to the solid state (λmax,abs=424 nm (4 wt%, BaSO4 pellet), λmax,em=524 nm (neat solid)). Insights into the electronic nature of the UV-vis transitions were obtained with time-dependent density functional theory (TD-DFT) calculations for a truncated model complex

    Molecular Implementation of Sequential and Reversible Logic Through Photochromic Energy Transfer Switching

    Get PDF
    Photochromic spiropyrans modified with fluorophores were investigated as molecular platforms for the achievement of fluorescence switching through modulation of energy transfer. The dyads were designed in such a way that energy transfer is only observed for the open forms of the photochrome (merocyanine and protonated merocyanine), whereas the closed spiropyran is inactive as an energy acceptor. This was made possible through a deliberate choice of fluorophores (4-amino-1,8-naphthalimide, dansyl, and perylene) that produce zero spectral overlap with the spiro form and considerable overlap for the merocyanine forms. From the Förster theory, energy transfer is predicted to be highly efficient and in some cases of 100 % efficiency. The combined switching by photonic (light of λ>530 nm) and chemical (base) inputs enabled the creation of a sequential logic device, which is the basic element of a keypad lock. Furthermore, in combination with an anthracene-based acidochromic fluorescence switch, a reversible logic device was designed. This enables the unambiguous coding of different input combinations through multicolour fluorescence signalling. All devices can be conveniently reset to their initial states and repeatedly cycled

    Self-Assembled Ruthenium(II)Porphyrin-Aluminium(III)Porphyrin-Fullerene Triad for Long-Lived Photoinduced Charge Separation

    Get PDF
    A very efficient metal-mediated strategy led, in a single step, to a quantitative construction of a new three-component multichromophoric system containing one fullerene monoadduct, one aluminium(III) monopyridylporphyrin, and one ruthenium(II) tetraphenylporphyrin. The Al(III) monopyridylporphyrin component plays the pivotal role in directing the correct self-assembly process and behaves as the antenna unit for the photoinduced processes of interest. A detailed study of the photophysical behavior of the triad was carried out in different solvents (CH2Cl2, THF, and toluene) by stationary and timeresolved emission and absorption spectroscopy in the pico- and nanosecond time domains. Following excitation of the Alporphyrin, the strong fluorescence typical of this unit was strongly quenched. The time-resolved absorption experiments provided evidence for the occurrence of stepwise photoinduced electron and hole transfer processes, leading to a chargeseparated state with reduced fullerene acceptor and oxidized ruthenium porphyrin donor. The time constant values measured in CH2Cl2 for the formation of charge-separated state Ru-Al+-C60 - (10 ps), the charge shift process (Ru-Al+-C60 - \u2192 Ru+-Al-C60 -), where a hole is transferred from Al-based to Ru-based unit (75 ps), and the charge recombination process to ground state (>5 ns), can be rationalized within the Marcus theory. Although the charge-separating performance of this triad is not outstanding, this study demonstrates that, using the self-assembling strategy, improvements can be obtained by appropriate chemical modifications of the individual molecular components

    Campholenic aldehyde ozonolysis: a mechanism leading to specific biogenic secondary organic aerosol constituents

    Get PDF
    In the present study, campholenic aldehyde ozonolysis was performed to investigate pathways leading to specific biogenic secondary organic aerosol (SOA) marker compounds. Campholenic aldehyde, a known α-pinene oxidation product, is suggested to be a key intermediate in the formation of terpenylic acid upon α-pinene ozonolysis. It was reacted with ozone in the presence and absence of an OH radical scavenger, leading to SOA formation with a yield of 0.75 and 0.8, respectively. The resulting oxidation products in the gas and particle phases were investigated employing a denuder/filter sampling combination. Gas-phase oxidation products bearing a carbonyl group, which were collected by the denuder, were derivatised by 2,4-dinitrophenylhydrazine (DNPH) followed by liquid chromatography/negative ion electrospray ionisation time-of-flight mass spectrometry analysis and were compared to the gas-phase compounds detected by online proton-transfer-reaction mass spectrometry. Particle-phase products were also analysed, directly or after DNPH derivatisation, to derive information about specific compounds leading to SOA formation. Among the detected compounds, the aldehydic precursor of terpenylic acid was identified and its presence was confirmed in ambient aerosol samples from the DNPH derivatisation, accurate mass data, and additional mass spectrometry (MS<sup>2</sup> and MS<sup>3</sup> fragmentation studies). Furthermore, the present investigation sheds light on a reaction pathway leading to the formation of terpenylic acid, involving α-pinene, α-pinene oxide, campholenic aldehyde, and terpenylic aldehyde. Additionally, the formation of diaterpenylic acid acetate could be connected to campholenic aldehyde oxidation. The present study also provides insights into the source of other highly functionalised oxidation products (e.g. <i>m</i> / <i>z</i> 201, C<sub>9</sub>H<sub>14</sub>O<sub>5</sub> and <i>m</i> / <i>z</i> 215, C<sub>10</sub>H<sub>16</sub>O<sub>5</sub>), which have been observed in ambient aerosol samples and smog chamber-generated monoterpene SOA. The <i>m</i> / <i>z</i> 201 and 215 compounds were tentatively identified as a C<sub>9</sub>- and C<sub>10</sub>-carbonyl-dicarboxylic acid, respectively, based on reaction mechanisms of campholenic aldehyde and ozone, as well as detailed interpretation of mass spectral data, in conjunction with the formation of corresponding DNPH derivatives
    corecore