59 research outputs found

    Economic Feasibility of Power Supply Using Hybrid System for a Hotel in Cold Climate

    Get PDF
    Today, renewable resources are used growingly due to environmental impact of fossil fuels. Solar and wind energies are of the largest renewable resources which are increasingly used to generate the power. In this paper, firstly, power and speed of wind and potential of solar radiation in Iran, especially in Tabriz, were examined. Then, using this analysis, an appropriate hybrid system was provided to meet the energy consumption of a hotel in Tabriz Town which is not connected to the electricity network. For this, firstly, thermal load of heating and cooling required for a building in Tabriz Town was accurately calculated by Energyplus software and then, four hybrid system scenarios were determined and examined by Homer software. The results of data analysis of economic feasibility showed that wind-diesel hybrid system with a storage battery is the most efficient system for power supply of a hotel. Keywords: Energy Plus, hybrid systems, Homer, feasibility JEL Classifications: Q4, Q5

    Frequency and Geographic Distribution of CARD9 Mutations in Patients With Severe Fungal Infections

    Get PDF
    Autosomal recessive deficiency in the caspase recruitment domain containing protein 9 (CARD9) results in susceptibility to fungal infections. In the last decade, infections associated with CARD9 deficiency are more reported due to the advent of genome sequencing. The aim of this study was to evaluate the frequency, geographic distribution and nature of mutations in patients with CARD9 deficiency. We identified 60 patients with 24 mutations and different fungal infections. The presence of the homozygous (HMZ) p.Q295X (c.883C > T) and HMZ p.Q289X (c.865C > T) mutations were associated with an elevated risk of candidiasis (OR: 1.6; 95% CI: 1.18–2.15; p = 0.004) and dermatophytosis (OR: 1.85; 95% CI: 1.47–2.37; p < 0.001), respectively. The geographical distribution differed, showing that the main mutations in African patients were different Asian patients; HMZ p.Q289X (c.865C > T) and HMZ p.Q295X (c.865C > T) accounted for 75% and 37.9% of the African and Asian cases, respectively. The spectrum of CARD9 mutations in Asian patients was higher than in African. Asia is the most populous continent in the world and may have a greater genetic burden resulting in more patients with severe fungal infections. The presence of a high diversity of mutations revealing 24 distinct variations among 60 patients emphasize that the unique genetic alteration in CARD9 gene may be associated with certain geographical areas

    Soil Moisture Data for the Validation of Permafrost Models Using Direct and Indirect Measurement Approaches at Three Alpine Sites

    Get PDF
    To date, there has been no comprehensive review of the epidemiology, risk factors, species distribution, and outcomes of candidemia in Iran. This study aimed to perform a systematic review and meta-analysis of all reported candidemia cases in Iran until December 2015. The review process occurred in three steps, namely a literature search, data extraction and statistical analyses. After a comprehensive literature search, we identified 55 cases. The mean age of patients was 46.80±24.30 years (range 1–81 years). The main risk factors for candidemia were surgery and burns (23.6%), followed by malignancies (20%), use of broad-spectrum antibiotics (18.2%), and diabetes (7.3%). Candida parapsilosis (n=17, 30.8%) was the leading agent, followed by Candida albicans (n=15, 27.3%), Candida glabrata (n=10, 18.2%), and Candida tropicalis (n=8, 14.5%). The frequencies of candidemia cases due to C. glabrata, C. parapsilosis, and C. albicans were significantly higher among patients aged>60, 21–40, and 41–60 years, respectively. Comparison of risk factors for candidemia by multiple logistic regression showed that one of the most important risk factors was surgery (OR: 4.245; 95% CI: 1.141–15.789; P=0.031). The outcome was recorded in only 19 cases and 13 of those patients (68.4%) expired. This study confirms that knowledge of the local epidemiology is important when conducting surveillance studies to prevent and control candidemia and will be of interest for antifungal stewardship

    A Review of Esophagitis Due to Candida Species in Human Immunodeficiency Virus (HIV) Infected Patients

    Get PDF
    The present study aimed to provide an overview of epidemiology, pathogenicity, clinical diagnosis, and treatment of Candida esophagitis in human immunodeficiency virus (HIV)-infected patients. The review process involved studying all the existing literature published on this Candida infection. Esophageal candidiasis (EC) is the most common manifestation of mucosal candidiasis and patients with HIV are predominantly at the risk of this opportunistic infection. The prevalence of EC indicated diverse ranges among HIV patients in different geographic areas due to antiretroviral therapy (ART). The main factors for EC were gastric ulcers, CD4+cell count 400 cells/mL in the ART era. However, a low CD4+ cell count (<200 cells/mL) was significantly associated with EC in the pre-ART era. The interactions between the Candida virulence factor and host immune defense lead to the host responses against this fungal pathogen. During the Candida albicans invasion, secretion of candidalysin which is encoded by the hyphal gene ECE1 has a potential role in epithelial cell damage and secretion of stimulated cytokine. Early trials of the empirical antifungal therapy are recommended before an endoscopic examination. Esophageal biopsy should be considered in patients with a failure of empiric antifungal treatment as it may allow the possibility of drug-resistant Candida and other opportunistic pathogens. The first-line induction treatment of Candida esophagitis is based on oral fluconazole. The shift from C. albicans to non-albicans Candida (NAC) may be correlated with the development of fluconazole resistance and relapse or therapeutic failure in this infection. An increase in the intrinsic and acquired resistance has raised the significance of the optimal antifungal therapy for the critically ill patient. Candida esophagitis requires a systematic suspicion for early diagnosis and appropriate management of HIV infected patients in order to prevent delayed treatment related to undesirable morbidity or even mortality scores

    Use of PCR-RFLP and PCR-HWP1 for Identification of Candia Species Isolated from Cystic Fibrosis Patients

    Get PDF
    Background: Due to the predisposing conditions in patients with cystic fibrosis (CF) caused by defective mucociliary clearance facilitating colonization and invasion with Candida species has dramatically increased. Traditional methods for identifying problems are imminent and time-consuming. Therefore, molecular techniques utilizing amplification of target DNA provide quick and precise methods for the diagnosis and identification of Candida species. Therefore, the aim of the current study was to identify the most medically common isolated Candida species from the air way of CF patients by PCR-RFLP and amplification of HWP1 gene. Materials and Methods: A total of 42 CF patients presenting symptoms who referred to pediatric respiratory diseases research center were screened for the presence of Candida spp. The isolates initially were phenotypically identified and confirmed by molecular approaches based on restriction fragment length polymorphism (PCR-RFLP) for the discrimination of C. albicans of non-albicans and the amplification of HWP1 gene for the discrimination of C. albicans from C. dubliniensis and C. africana was conducted. Results: The results show that C. albicans was the most frequently isolated species (83.8%) followed by non-albicans included C. parapsilosis (7.1%), C. glabrata (3.2%), and C. tropicalis (3.2%). The restriction patterns of each Candida species were perfectly specific. Since MspI could not discriminate between the three morphological related species, C. albicans, C. dubliniensis and C. africana, we used PCR amplification of HWP1 gene, which (7.1%) species from C. albicans identified as C. dubliniensis, however C. africana strains were not found. Discussion: The present study found that C. albicans as predominant species wereisolated from the CF patients. It could be concluded that molecular diagnostic methods are reliable and would be useful for the identification of medically important Candida species in clinical samples. Therefore, considerable attention has been paid to the prevention and treatment of microbial growth, which has resulted in the improvement of patient management

    Molecular and microscopy detection of Pneumocystis jirovecii in hospitalized patients during the COVID-19 pandemic

    Get PDF
    IntroductionEarly detection of Pneumocystis jirovecii as an opportunistic pathogen that may endanger predisposed persons, including COVID-19 patients, may help to choose the optimal management.MethodsIn this study, 585, including 530 COVID-19 patients, with clinical and radiological evidence of respiratory diseases, were investigated for P. jirovecii screening. Clinical specimens were examined by direct microscopy and PCR, and randomly selected positive PCR products were confirmed through DNA sequence analysis.ResultsThirty-one (5.3%) samples were positive in P. jirovecii-specific nested-PCR, while by direct microscopic tests, Pneumocystis was observed in 22 (3.76%) samples. Males (61.7%) and patients over 50 years old (75.6%) were more commonly affected than others, and malaise and fatigue (84%), and wheezing (75%) were the most common symptoms, followed by fever (40.48%) and dyspnea (39.51%). Among the Pneumocystis-positive patients, three cases had coinfection with Aspergillus fumigatus, A. flavus, and A. niger (each n = 1), as documented by direct microscopy, culture, and species identification by PCR-sequencing.ConclusionPneumocystis pneumonia is still a diagnostic challenge; therefore, additional large-scale studies are needed to clarify the epidemiology of the disease in immunocompromised or COVID-19 patients

    Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    How long one lives, how many years of life are spent in good and poor health, and how the population's state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years. Methods We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. Findings Globally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1-7·8), from 65·6 years (65·3-65·8) in 1990 to 73·0 years (72·7-73·3) in 2017. The increase in years of life varied from 5·1 years (5·0-5·3) in high SDI countries to 12·0 years (11·3-12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1-33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8-15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9-6·7), from 57·0 years (54·6-59·1) in 1990 to 63·3 years (60·5-65·7) in 2017. The increase varied from 3·8 years (3·4-4·1) in high SDI countries to 10·5 years (9·8-11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4-1·7) in Saint Vincent and the Grenadines (62·4 years [59·9-64·7] in 1990 to 63·5 years [60·9-65·8] in 2017) to 23·7 years (21·9-25·6) in Eritrea (30·7 years [28·9-32·2] in 1990 to 54·4 years [51·5-57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6-2·3) in Algeria to 11·9 years (10·9-12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75·8 years [72·4-78·7]) and males (72·6 years [69·8-75·0]) and the lowest estimates were in Central African Republic (47·0 years [43·7-50·2] for females and 42·8 years [40·1-45·6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41·3% (38·8-43·5) for communicable diseases and by 49·8% (47·9-51·6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40·1% (36·8-43·0), although age-standardised DALY rates decreased by 18·1% (16·0-20·2)

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    The Global Burden of Diseases, Injuries and Risk Factors 2017 includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. METHODS: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
    corecore