494 research outputs found

    Critical Point Field Mixing in an Asymmetric Lattice Gas Model

    Full text link
    The field mixing that manifests broken particle-hole symmetry is studied for a 2-D asymmetric lattice gas model having tunable field mixing properties. Monte Carlo simulations within the grand canonical ensemble are used to obtain the critical density distribution for different degrees of particle-hole asymmetry. Except in the special case when this asymmetry vanishes, the density distributions exhibit an antisymmetric correction to the limiting scale-invariant form. The presence of this correction reflects the mixing of the critical energy density into the ordering operator. Its functional form is found to be in excellent agreement with that predicted by the mixed-field finite-size-scaling theory of Bruce and Wilding. A computational procedure for measuring the significant field mixing parameter is also described, and its accuracy gauged by comparing the results with exact values obtained analytically.Comment: 10 Pages, LaTeX + 8 figures available from author on request, To appear in Z. Phys.

    Iterative algorithms for total variation-like reconstructions in seismic tomography

    Full text link
    A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, ...) is made in the context of global seismic tomography. Both penalized and constrained formulations of seismic recovery problems are treated. A number of simple iterative recovery algorithms applicable to these problems are described. The convergence speed of these algorithms is compared numerically in this setting. For the constrained formulation a new algorithm is proposed and its convergence is proven.Comment: 28 pages, 8 figures. Corrected sign errors in formula (25

    Billiards in a general domain with random reflections

    Full text link
    We study stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain D⊂Rd{\mathcal D} \subset {\mathbb R}^d until it hits the boundary and bounces randomly inside according to some reflection law. We assume that the boundary of the domain is locally Lipschitz and almost everywhere continuously differentiable. The angle of the outgoing velocity with the inner normal vector has a specified, absolutely continuous density. We construct the discrete time and the continuous time processes recording the sequence of hitting points on the boundary and the pair location/velocity. We mainly focus on the case of bounded domains. Then, we prove exponential ergodicity of these two Markov processes, we study their invariant distribution and their normal (Gaussian) fluctuations. Of particular interest is the case of the cosine reflection law: the stationary distributions for the two processes are uniform in this case, the discrete time chain is reversible though the continuous time process is quasi-reversible. Also in this case, we give a natural construction of a chord "picked at random" in D{\mathcal D}, and we study the angle of intersection of the process with a (d−1)(d-1)-dimensional manifold contained in D{\mathcal D}.Comment: 50 pages, 10 figures; To appear in: Archive for Rational Mechanics and Analysis; corrected Theorem 2.8 (induced chords in nonconvex subdomains

    Half-metallic antiferromagnets in thiospinels

    Full text link
    We have theoretically designed the half-metallic (HM) antiferromagnets (AFMs) in thiospinel systems, Mn(CrV)S4\rm Mn(CrV)S_{4} and Fe0.5Cu0.5(V0.5Ti1.5)S4\rm Fe_{0.5}Cu_{0.5}(V_{0.5}Ti_{1.5})S_{4}, based on the electronic structure studies in the local-spin-density approximation (LSDA). We have also explored electronic and magnetic properties of parent spinel compounds of the above systems; CuV2S4\rm CuV_{2}S_{4} and CuTi2S4\rm CuTi_{2}S_{4} are found to be HM ferromagnets in their cubic spinel structures, while MnCr2S4\rm MnCr_{2}S_{4} is a ferrimagnetic insulator. We have discussed the feasibility of material synthesis of HM-AFM thiospinel systems.Comment: 4 pages, 5 figure

    Nanomagnetic intergrowths in Fe-Ni meteoritic metal: The potential for time-resolved records of planetesimal dynamo fields

    Get PDF
    Nanoscale intergrowths unique to the cloudy zones (CZs) of meteoritic metal display novel magnetic behaviour with the potential to reveal new insight into the early development of magnetic fields on protoplanetary bodies. The nanomagnetic state of the CZ within the Tazewell IIICD iron meteorite has been imaged using off-axis electron holography. The CZ is revealed to be a natural nanocomposite of magnetically hard islands of tetrataenite (ordered FeNi) embedded in a magnetically soft matrix of ordered Fe3Ni. In the remanent state, each tetrataenite island acts as a uniaxial single domain particle with its 001 magnetic easy axis oriented along one of three ?100? crystallographic directions of the parent taenite phase. Micromagnetic simulations demonstrate that switching occurs via the nucleation and propagation of domain walls through individual tetrataenite particles. The switching field (Hs) varies with the length scale of the matrix phase (Lm), with Hs \> 1 T for Lm \~{}10 nm (approaching the intrinsic switching field for isolated single domain tetrataenite) and 0.2 \< H s \< 0.6 T for Lm \~{}30 nm. The reduction in Hs with increasing Lc is caused by exchange coupling between the hard tetrataenite islands and the soft magnetic matrix, which lowers the critical field for domain wall nucleation, providing an explanation for previously observed coercivity variations throughout the {CZ.} Non-random distributions of the tetrataenite easy axes are observed locally throughout the {CZ}, suggesting a magnetic field could have been present during nanostructure formation. This observation demonstrates the potential for stable chemical transformation remanent magnetisation to be encoded by the nanostructure, with variations in the proportions of the six possible magnetisation states reflecting the intensity and relative direction of the magnetic fields present during cooling. According to recent cooling models, the cooling rate of meteoritic metal originating near the surface of differentiated planetesimals was such that the magnetic signal across the {CZ} could potentially record dynamo field intensity and direction variations over time (10{\textendash}100 Ma), which would enable events such as magnetic reversals and the decay of an asteroid dynamo to be observed

    The impact of working memory load on task execution and online plan adjustment during multitasking in a virtual environment

    Get PDF
    Three experiments investigated the impact of working memory load on online plan adjustment during a test of multitasking in young, nonexpert, adult participants. Multitasking was assessed using the Edinburgh Virtual Errands Test (EVET). Participants were asked to memorize either good or poor plans for performing multiple errands and were assessed both on task completion and on the extent to which they modified their plans during EVET performance. EVET was performed twice, with and without a secondary task loading a component of working memory. In Experiment 1, articulatory suppression was used to load the phonological loop. In Experiment 2, oral random generation was used to load executive functions. In Experiment 3, spatial working memory was loaded with an auditory spatial localization task. EVET performance for both good- and poor-planning groups was disrupted by random generation and sound localization, but not by articulatory suppression. Additionally, people given a poor plan were able to overcome this initial disadvantage by modifying their plans online. It was concluded that, in addition to executive functions, multiple errands performance draws heavily on spatial, but not verbal, working memory resources but can be successfully completed on the basis of modifying plans online, despite a secondary task load

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore