174 research outputs found

    Silencing of ASC in Cutaneous Squamous Cell Carcinoma.

    Get PDF
    Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is an important adaptor protein for inflammasome activation, mediating the secretion of protumorigenic innate cytokines. However, ASC is also known to trigger apoptosis in tumor cells, acting as a tumor-suppressor gene, which is lost in several human cancers. The aim of this study was to evaluate the clinical significance of ASC in human cutaneous squamous cell carcinoma (SCC). Initially, ASC expression was immunohistochemically evaluated in non-metastic and metastatic SCC. While ASC expression does not correlate with metastatic potential, it correlates with the degree of dedifferentiation. Using methylation specific PCR we were able to demonstrate ASC silencing by promotor specific methylation and impaired inflammasome function in methylated cell lines, linking epigenetic modifications to innate immune activation in keratinocytes. Interestingly, upon ASC restoration by treatment with demethylating agents, we were able to restore AIM2 and NLRP3 activation. In summary, loss of ASC driven tumor development is counterbalanced in the identical cell by the inhibition of pro-tumorigenic inflammation in the tumor cell itself

    Greenhouse gas abatement on southern Australian grains farms: B iophysical potential and financial impacts

    Get PDF
    The agricultural sector generates a substantial proportion of global greenhouse gas (GHG) emissions through emissions of carbon dioxide (CO2) and nitrous oxide (N2O). Changes to agricultural practices can provide GHG abatement by maintaining or increasing soil organic carbon (SOC) stored in soils or vegetation, or by decreasing N2O emissions. However, it can be difficult to identify practices that achieve net abatement because practices that increase SOC stocks may also increase N2O emissions from the soil. This study simulated the net on-farm GHG abatement and gross margins for a range of management scenarios on two grain farms from the western and southern grain growing regions of Australia using the Agricultural Production Systems sIMulator (APSIM) model. The soils and practices selected for the study were typical of these regions. Increased cropping intensity consistently provided emissions reductions for all site-soil combinations. The practice of replacing uncropped or unmanaged pasture fallows with a winter legume crop was the only one of nine scenarios to decrease GHG emissions and increase gross margins relative to baseline practice at both locations over the 100-year simulation period. The greatest abatement was obtained by combining this practice with an additional summer legume crop grown for a short period as green manure. However, adding the summer legume decreased farm gross margins because the summer crop used soil moisture otherwise available to the following cash crop, thus reducing yield and revenue. Annual N2O emissions from the soil were an order of magnitude lower from sandy-well-drained soils at the Western Australian location (Dalwallinu) than at the other location (Wimmera) with clay soil, highlighting the importance of interactions between climate and soil properties in determining appropriate GHG abatement practices. Thus, greatest abatement at Dalwallinu was obtained from maintaining or increasing SOC, but managing both N2O emissions and SOC storage were important for providing abatement at Wimmera

    Invariant higher-order variational problems II

    Full text link
    Motivated by applications in computational anatomy, we consider a second-order problem in the calculus of variations on object manifolds that are acted upon by Lie groups of smooth invertible transformations. This problem leads to solution curves known as Riemannian cubics on object manifolds that are endowed with normal metrics. The prime examples of such object manifolds are the symmetric spaces. We characterize the class of cubics on object manifolds that can be lifted horizontally to cubics on the group of transformations. Conversely, we show that certain types of non-horizontal geodesics on the group of transformations project to cubics. Finally, we apply second-order Lagrange--Poincar\'e reduction to the problem of Riemannian cubics on the group of transformations. This leads to a reduced form of the equations that reveals the obstruction for the projection of a cubic on a transformation group to again be a cubic on its object manifold.Comment: 40 pages, 1 figure. First version -- comments welcome

    Thrombolysis with tissue plasminogen activator in acute myocardial infarction: no additional benefit from immediate percutaneous coronary angioplasty

    Get PDF
    A randomised trial of 367 patients with acute myocardial infarction was performed to determine whether an invasive strategy combining thrombolysis with recombinant tissue-type plasminogen activator (rTPA), heparin, and acetylsalicylic acid, and immediate percutaneous transluminal coronary angioplasty (PTCA) would be superior to a noninvasive strategy with the same medical treatment but without immediate angiography and PTCA. Intravenous infusion of 100 mg rTPA was started within 5 h after onset of symptoms (median 156 min). Angiography was performed 6-165 min later in 180 out of 183 patients allocated to the invasive strategy; 184 patients were allocated to the non-invasive strategy. Immediate PTCA reduced the percentage stenosis of the infarc

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    The handbook for standardised field and laboratory measurements in terrestrial climate-change experiments and observational studies

    Get PDF
    Climate change is a worldwide threat to biodiversity and ecosystem structure, functioning, and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate‐change impacts across the soil–plant–atmosphere continuum. An increasing number of climate‐change studies is creating new opportunities for meaningful and high‐quality generalisations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis, and upscaling. Many of these challenges relate to a lack of an established “best practice” for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study

    Get PDF
    It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (ÎČ = 16.1, CI(ÎČ) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (ÎČ = 4.86,CI(ÎČ) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest

    Measurement of the cross section of high transverse momentum Z→bb̄ production in proton–proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This Letter reports the observation of a high transverse momentum Z→bb̄ signal in proton–proton collisions at √s=8 TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fb−Âč. The Z→bb̄ decay is reconstructed from a pair of b -tagged jets, clustered with the anti-ktkt jet algorithm with R=0.4R=0.4, that have low angular separation and form a dijet with pT>200 GeVpT>200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be σZ→bbÂŻfid=2.02±0.20 (stat.) ±0.25 (syst.)±0.06 (lumi.) pb=2.02±0.33 pb, in good agreement with next-to-leading-order theoretical predictions

    Measurement of the branching ratio Γ(Λb⁰ → ψ(2S)Λ0)/Γ(Λb⁰ → J/ψΛ0) with the ATLAS detector

    Get PDF
    An observation of the Λb0→ψ(2S)Λ0\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0 decay and a comparison of its branching fraction with that of the Λb0→J/ψΛ0\Lambda_b^0 \rightarrow J/\psi \Lambda^0 decay has been made with the ATLAS detector in proton--proton collisions at s=8 \sqrt{s}=8\,TeV at the LHC using an integrated luminosity of 20.6 20.6\,fb−1^{-1}. The J/ψJ/\psi and ψ(2S)\psi(2S) mesons are reconstructed in their decays to a muon pair, while the Λ0→pπ−\Lambda^0\rightarrow p\pi^- decay is exploited for the Λ0\Lambda^0 baryon reconstruction. The Λb0\Lambda_b^0 baryons are reconstructed with transverse momentum pT>10 p_{\rm T}>10\,GeV and pseudorapidity ∣η∣<2.1|\eta|<2.1. The measured branching ratio of the Λb0→ψ(2S)Λ0\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0 and Λb0→J/ψΛ0\Lambda_b^0 \rightarrow J/\psi \Lambda^0 decays is Γ(Λb0→ψ(2S)Λ0)/Γ(Λb0→J/ψΛ0)=0.501±0.033(stat)±0.019(syst)\Gamma(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \rightarrow J/\psi\Lambda^0) = 0.501\pm 0.033 ({\rm stat})\pm 0.019({\rm syst}), lower than the expectation from the covariant quark model.Comment: 12 pages plus author list (28 pages total), 5 figures, 1 table, published on Physics Letters B 751 (2015) 63-80. All figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2013-08
    • 

    corecore