93 research outputs found

    Epitaxial Synthesis of Blue Phosphorene

    Full text link
    Phosphorene is a new two-dimensional material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct band gap and high carrier mobility values, which make it suitable for a large variety of optical and electronic devices. However, the synthesis of single-layer phosphorene is a major challenge. The standard procedure to obtain phosphorene is by exfoliation. More recently, the epitaxial growth of single-layer phosphorene on Au(111) has been investigated by molecular beam epitaxy and the obtained structure has been described as a blue-phosphorene sheet. In the present study, large areas of high-quality monolayer phosphorene, with a band gap value at least equal to 0.8 eV, have been synthesized on Au(111). Our experimental investigations, coupled with DFT calculations, give evidence of two distinct phases of blue phosphorene on Au(111), instead of one as previously reported, and their atomic structures have been determined.Comment: This paper reports on the epitaxial synthesis of blue phosphoren

    Epitaxial growth of a silicene sheet

    Get PDF
    Using atomic resolved scanning tunneling microscopy, we present here the experimental evidence of a silicene sheet (graphenelike structure) epitaxially grown on a close-packed silver surface [Ag(111)]. This has been achieved via direct condensation of a silicon atomic flux onto the single-crystal substrate in ultrahigh vacuum conditions. A highly ordered silicon structure, arranged within a honeycomb lattice, is synthesized and present two silicon sublattices occupying positions at different heights (0.02 nm) indicating possible sp(2)-sp(3) hybridizations

    Formation of one-dimensional self-assembled silicon nanoribbons on Au(110)-(2x1)

    Get PDF
    We report results on the self-assembly of silicon nanoribbons on the (2x1) reconstructed Au(110) surface under ultra-high vacuum conditions. Upon adsorption of 0.2 monolayer (ML) of silicon the (2x1) reconstruction of Au(110) is replaced by an ordered surface alloy. Above this coverage a new superstructure is revealed by low electron energy diffraction (LEED) which becomes sharper at 0.3 Si ML. This superstructure corresponds to Si nanoribbons all oriented along the [-110] direction as revealed by LEED and scanning tunneling microscopy (STM). STM and high-resolution photoemission spectroscopy indicate that the nanoribbons are flat and predominantly 1.6 nm wide. In addition the silicon atoms show signatures of two chemical environments corresponding to the edge and center of the ribbons.Comment: Under publication in Applied Physics Letter

    Silicon Sheets By Redox Assisted Chemical Exfoliation

    Full text link
    In this paper, we report the direct chemical synthesis of silicon sheets in gram-scale quantities by chemical exfoliation of pre-processed calcium di-silicide (CaSi2). We have used a combination of X-ray photoelectron spectroscopy, transmission electron microscopy and Energy-dispersive X-ray spectroscopy to characterize the obtained silicon sheets. We found that the clean and crystalline silicon sheets show a 2-dimensional hexagonal graphitic structure.Comment: Accepted in J. Phys.: Condens. Matte

    The neurobiological link between OCD and ADHD

    Get PDF

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Metallization Of The Β-Sic(100) 3 × 2 Surface: A Dft Investigation

    No full text
    Using density functional theory (DFT) we report results for the electronic structure and vibrational dynamics of hydrogenated silicon carbide (001) (3 × 2) surfaces with various levels of hydrogenation. These results were obtained using density functional theory with a generalized gradient exchange correlation function. The calculations reveal that metallization can be achieved via hydrogen atoms occupying the second silicon layer. Further increase of hydrogen occupation on the second silicon layer sites results in a loss of this metallization. For the former scenario, where metallization occurs, we found a new vibrational mode at 1870 cm - 1, which is distinct from the mode associated with hydrogen atoms on the first layer. Furthermore, we found the diffusion barrier for a hydrogen atom to move from the second to the third silicon layer to be 258 meV. © 2012 Elsevier B.V. All rights reserved
    corecore