We report results on the self-assembly of silicon nanoribbons on the (2x1)
reconstructed Au(110) surface under ultra-high vacuum conditions. Upon
adsorption of 0.2 monolayer (ML) of silicon the (2x1) reconstruction of Au(110)
is replaced by an ordered surface alloy. Above this coverage a new
superstructure is revealed by low electron energy diffraction (LEED) which
becomes sharper at 0.3 Si ML. This superstructure corresponds to Si nanoribbons
all oriented along the [-110] direction as revealed by LEED and scanning
tunneling microscopy (STM). STM and high-resolution photoemission spectroscopy
indicate that the nanoribbons are flat and predominantly 1.6 nm wide. In
addition the silicon atoms show signatures of two chemical environments
corresponding to the edge and center of the ribbons.Comment: Under publication in Applied Physics Letter