163 research outputs found

    Structural basis for phosphorylation and lysine acetylation cross-talk in a kinase motif associated with myocardial ischemia and cardioprotection

    Get PDF
    Myocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation. We show lysine acetylation (acetyl-Lys)-dependent activation of AMP-activated protein kinase, AKT, and PKA kinases during ischemia. Phosphorylation and acetyl-Lys sites mapped onto tertiary structures were proximal in >50% of proteins investigated, yet they were mutually exclusive in 50 ischemic pre-conditioning- and/or ischemia-associated peptides containing the KXXS basophilic protein kinase consensus motif. Modifications in this motif were modeled in the C terminus of muscle-type creatine kinase. Acetyl-Lys increased proximal dephosphorylation by 10-fold. Structural analysis of modified muscle-type creatine kinase peptide variants by two-dimensional NMR revealed stabilization via a lysine-phosphate salt bridge, which was disrupted by acetyl-Lys resulting in backbone flexibility and increased phosphatase accessibility

    Evaluating the use of HILIC in large-scale, multi dimensional proteomics:horses for courses?

    Get PDF
    AbstractDespite many recent advances in instrumentation, the sheer complexity of biological samples remains a major challenge in large-scale proteomics experiments, reflecting both the large number of protein isoforms and the wide dynamic range of their expression levels. However, while the dynamic range of expression levels for different components of the proteome is estimated to be ∼107–8, the equivalent dynamic range of LC–MS is currently limited to ∼106. Sample pre-fractionation has therefore become routinely used in large-scale proteomics to reduce sample complexity during MS analysis and thus alleviate the problem of ion suppression and undersampling. There is currently a wide range of chromatographic techniques that can be applied as a first dimension separation. Here, we systematically evaluated the use of hydrophilic interaction liquid chromatography (HILIC), in comparison with hSAX, as a first dimension for peptide fractionation in a bottom-up proteomics workflow. The data indicate that in addition to its role as a useful pre-enrichment method for PTM analysis, HILIC can provide a robust, orthogonal and high-resolution method for increasing the depth of proteome coverage in large-scale proteomics experiments. The data also indicate that the choice of using either HILIC, hSAX, or other methods, is best made taking into account the specific types of biological analyses being performed

    A presynaptic phosphosignaling hub for lasting homeostatic plasticity

    Get PDF
    Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks

    Magnetite-doped polydimethylsiloxane (PDMS) for phosphopeptide enrichment

    Get PDF
    Reversible phosphorylation plays a key role in numerous biological processes. Mass spectrometry-based approaches are commonly used to analyze protein phosphorylation, but such analysis is challenging, largely due to the low phosphorylation stoichiometry. Hence, a number of phosphopeptide enrichment strategies have been developed, including metal oxide affinity chromatography (MOAC). Here, we describe a new material for performing MOAC that employs a magnetite-doped polydimethylsiloxane (PDMS), that is suitable for the creation of microwell array and microfluidic systems to enable low volume, high throughput analysis. Incubation time and sample loading were explored and optimized and demonstrate that the embedded magnetite is able to enrich phosphopeptides. This substrate-based approach is rapid, straightforward and suitable for simultaneously performing multiple, low volume enrichments

    Experimental demyelination and axonal loss are reduced in MicroRNA-146a deficient mice

    Get PDF
    BackgroundThe cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs) during remyelination, but its role has not been examined during demyelination.MethodsMicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray) and proteome (liquid chromatography tandem mass spectrometry) of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis.ResultsmiR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP+ oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2+ OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3+ and Iba1+ macrophages/microglia was reduced in the demyelinating corpus callosum of the KO mice.ConclusionDuring demyelination, absence of miR-146a reduced inflammatory responses, demyelination, axonal loss, the number of infiltrating macrophages, and increased the number of myelinating oligodendrocytes. The number of OPCs was slightly higher in the WT mice during remyelination, indicating a complex role of miR-146a during in vivo de- and remyelination

    Post-translational modifications and mass spectrometry detection

    Get PDF
    In this review, we provide a comprehensive bibliographic overview of the role of mass spectrometry and the recent technical developments in the detection of post-translational modifications (PTMs). We briefly describe the principles of mass spectrometry for detecting PTMs and the protein and peptide enrichment strategies for PTM analysis, including phosphorylation, acetylation and oxidation. This review presents a bibliographic overview of the scientific achievements and the recent technical development in the detection of PTMs is provided. In order to ascertain the state of the art in mass spectrometry and proteomics methodologies for the study of PTMs, we analyzed all the PTM data introduced in the Universal Protein Resource (UniProt) and the literature published in the last three years. The evolution of curated data in UniProt for proteins annotated as being post-translationally modified is also analyzed. Additionally, we have undertaken a careful analysis of the research articles published in the years 2010 to 2012 reporting the detection of PTMs in biological samples by mass spectrometry. © 2013 Elsevier Inc
    corecore