155 research outputs found

    The Synthesis and Biosynthesis of Chlorine Containing Metabolites

    Get PDF
    The biosynthesis of cryptosporiopsinol was investigated, in particular the nature of the contraction of the 6-membered ring to the 5-membered ring. The feeding of different labelled acetates to Periconia macrospinosa has been studied. The feeding result of CH313C18O2Na suggests that the ring contraction previously proposed cannot be correct and that the ring contraction must go via an alternative mechanism. The isocoumarin isolated from feeding of CD313CO2Na to Periconia macrospinosa showed in its 13C n. m. r. spectra two different beta-shifts at C-4a arising from the axial and equatorial deuteriums at C-4. A number of deuterium labelled 5-chloro-3,4-dihydro-8-hydroxy-6-methoxy-3-methylisocoumarins were synthesised. The results obtained confirmed that beta-shifts are additive and it was also shown that the equatorial deuterium exerted a greater beta-shift than the axial deuterium. The biosynthesis of microline and dechloromicroline was studied. 3,4-Dihydro-6,8-dihydroxy-3-methylisocoumarin was synthesised with a 14C at C-3. This isocoumarin was also synthesised with deuterium atoms at C-4 and the methyl group. These compounds were fed to Gilmaniella humicola and shown to be incorporated into dechloromicroline intact. A synthetic route was developed which gave the dimethyl ether of perimacol a metabolite of Periconia macrospinosa. It was shown that a trans arrangement exists between the methyl group and methoxyl group at C-3 and C-4 respectively. Previously it was thought that a cis arrangement existed between the substituents at C-3 and C-4

    Carbapenem-only combination therapy against multi-drug resistant Pseudomonas aeruginosa : assessment of in vitro and in vivo efficacy and mode of action

    Get PDF
    Funding: This research was funded by the University of St Andrews.The aim of the study was to determine the efficacy of carbapenem-only combination treatments derived from four approved drugs (meropenem, doripenem, ertapenem and imipenem) against a MDR strain of P. aeruginosa in a Galleria mellonella larvae infection model. G. mellonella larvae were infected with P. aeruginosa NCTC 13437 (carrying the VIM 10 carbapenamase) and the efficacy of the six possible dual, four triple, and one quadruple carbapenem combination(s) were compared to their constituent monotherapies. Four of these combinations showed significantly enhanced survival compared to monotherapies and reduced the bacterial burden inside infected larvae but without complete elimination. Bacteria that survived combination therapy were slower growing, less virulent but with unchanged carbapenem MICs—observations that are consistent with a persister phenotype. In vitro time-kill assays confirmed that the combinations were bactericidal and confirmed that a low number of bacteria survived exposure. Mass spectrometry was used to quantify changes in the concentration of carbapenems in the presence of carbapenemase-carrying P. aeruginosa. The rate of degradation of individual carbapenems was altered, and often significantly reduced, when the drugs were in combinations compared with the drugs alone. These differences may account for the enhanced inhibitory effects of the combinations against carbapenem-resistant P. aeruginosa and are consistent with a ‘shielding’ hypothesis. In conclusion, carbapenem combinations show promise in combating MDR P. aeruginosa and are worthy of additional study and development.Publisher PDFPeer reviewe

    On the interaction between human IQGAP1 and actin

    Get PDF
    DM thanks the School of Biological Sciences, Queen’s University, Belfast for a summer studentship and EH thanks the Department of Employment and Learning, Northern Ireland for a postgraduate studentship. The work was funded in part by grants from the BBSRC (BB/D000394/1 To DJT) and by the Wellcome Trust [grant number GR06281AIA] which funded the purchase of the QStar XL mass spectrometer at the BBSRC Mass Spectrometry and Proteomics Facility, University of St Andrews and funded SLS.IQGAPs are eukaryotic proteins which integrate signals from various sources and pass these on the cytoskeleton. Understanding how they do this requires information on the interfaces between the proteins. Here, it is shown that the calponin homology domain of human IQGAP1 (CHD1) can be crosslinked with α-actin. The stoichiometry of the interaction was 1:1. A molecular model was built of the complex and associated bioinformatics analyses predicted that the interaction is likely to involve an electrostatic interaction between Lys-240 of α-actin and Glu-30 of CHD1. These residues are predicted to be accessible and are not involved in many intra-protein interactions; they are thus available for interaction with binding partners. They are both located in regions of the proteins which are predicted to be flexible and disordered; interactions between signalling molecules often involve flexible, disordered regions. The predicted binding region in CHD1 is well conserved in many eukaryotic IQGAP-like proteins. In some cases (e.g Dictyostelium discoideum and Saccharomyces cerevisiae) protein sequence conservation is weak, but molecular modelling reveals that a region of charged, polar residues in a flexible N-terminus is structurally well conserved. Therefore we conclude that the calponin homology domains of IQGAP1-like proteins interact initially through the electrostatic interaction identified here and that there may be subsequent conformational changes to form the final complex.PostprintPeer reviewe

    Contaminants in Commercial Preparations of ‘Purified’ Small Leucine-Rich Proteoglycans May Distort Mechanistic Studies

    Get PDF
    This paper reports the perplexing results that came about because of seriously impure commercially available reagents. Commercial reagents and chemicals are routinely ordered by scientists and are expected to have been rigorously assessed for their purity. Unfortunately, we found this assumption to be risky. Extensive work was carried out within our laboratory using commercially-sourced preparations of the small leucine-rich proteoglycans, decorin and biglycan, to investigate their influence on nerve cell growth. Unusual results compelled us to analyse the composition and purity of both preparations of these proteoglycans using both mass spectrometry and Western blotting, with and without various enzymatic deglycosylations. Commercial ‘decorin’ and ‘biglycan’ were found to contain a mixture of proteoglycans including not only both decorin and biglycan but also fibromodulin and aggrecan. The unexpected effects of ‘decorin’ and ‘biglycan’ on nerve cell growth could be explained by these impurities. Decorin and biglycan contain either chondroitin or dermatan sulphate glycosaminoglycan chains whilst fibromodulin only contains keratan sulphate and the large (>2,500 kDa), highly glycosylated aggrecan, contains both keratan and chondroitin sulphate. The different structure, molecular weights and composition of these impurities significantly affected our work and any conclusions that could be made. These findings beg the question as to whether scientists need to verify the purity of each commercially obtained reagent used in their experiments. The implications of these findings are vast, since the effects of these impurities may already have led to inaccurate conclusions and reports in the literature with concomitant loss of researchers’ funds and time

    Quantitative proteomic profiling of the rat substantia nigra places glial fibrillary acidic protein at the hub of proteins dysregulated during aging : implications for idiopathic Parkinson’s disease

    Get PDF
    This work was made possible by generous funding from the Keele University ACORN scheme and Keele University School of Medicine.There is a strong correlation between aging and onset of idiopathic Parkinson's disease, but little is known about whether cellular changes occur during normal aging that may explain this association. Here, proteomic and bioinformatic analysis was conducted on the substantia nigra (SN) of rats at four stages of life to identify and quantify protein changes throughout aging. This analysis revealed that proteins associated with cell adhesion, protein aggregation and oxidation‐reduction are dysregulated as early as middle age in rats. Glial fibrillary acidic protein (GFAP) was identified as a network hub connecting the greatest number of proteins altered during aging. Furthermore, the isoform of GFAP expressed in the SN varied throughout life. However, the expression levels of the rate‐limiting enzyme for dopamine production, tyrosine hydroxylase (TH), were maintained even in the oldest animals, despite a reduction in the number of dopamine neurons in the SN pars compact(SNc) as aging progressed. This age‐related increase in TH expression per neuron would likely to increase the vulnerability of neurons, since increased dopamine production would be an additional source of oxidative stress. This, in turn, would place a high demand on support systems from local astrocytes, which themselves show protein changes that could affect their functionality. Taken together, this study highlights key processes that are altered with age in the rat SN, each of which converges upon GFAP. These findings offer insight into the relationship between aging and increased challenges to neuronal viability, and indicate an important role for glial cells in the aging process.Publisher PDFPeer reviewe

    Resource recovery from the anaerobic digestion of food waste is underpinned by cross-kingdom microbial activities

    Get PDF
    This work was supported by the Earth and Natural Sciences (ENS) Doctoral Studies Programme, funded by the Higher Education Authority (HEA) of Ireland through the Programme for Research at Third Level Institutions, Cycle 5 (PRTLI-5), co-funded by the European Regional Development Fund (ERDF).As the human population grows on the planet so does the generation of waste and particularly that of food waste. In order to tackle the world sustainability crisis, efforts to recover products from waste are critical. Here, we anaerobically recovered volatile fatty acids (VFAs) from food waste and analysed the microbial populations underpinning the process. An increased contribution of fungi relative to bacteria was observed throughout the reactor operation, with both kingdoms implicated into the main three steps of anaerobic digestion occurring within our systems: hydrolysis, acidogenesis and acetogenesis. Overall, Ascomycota, Proteobacteria and Firmicutes were found to drive the anaerobic digestion of food waste, with butyrate as the most abundant VFA likely produced by Clostridium using lactate as a precursor. Taken together we demonstrate that the generation of products of added-value from food waste results from cross-kingdoms microbial activities implicating fungi and bacteria.Publisher PDFPeer reviewe

    Assessing the impact of interfering organic matter on soil metaproteomic workflow

    Get PDF
    Funding: Matthias Waibel was funded by the University of Galway College of Science and the Irish Research Council under GOIPG/2016/1215. The James Hutton Institute receives funding support from the Rural and Environment Science and Analytical Services Division of the Scottish Government. Open access funding provided by IReL.Soil organic matter (SOM) is biologically, chemically, and physically complex. As a major store of nutrients within soil, it plays an important role in nutrient provision to plants. An enhanced understanding of SOM utilisation processes could underpin better fertiliser management for plant growth, with reduced environmental losses. Metaproteomics can allow the characterisation of protein profiles and could help gaining insights into SOM microbial decomposition mechanisms. Here, we applied three different extraction methods to two soil types to recover SOM with different characteristics. Specifically, water extractable organic matter, mineral associated organic matter and protein-bound organic matter were targeted with the aim to investigate the metaproteome enriched in those extractions. As a proof-of-concept replicated extracts from one soil were further analysed for peptide identification using liquid chromatography followed by tandem mass spectrometry. We employ a framework for mining mass spectra for both peptide assignment and fragmentation pattern characterisation. Different extracts were found to exhibit contrasting total protein and humic substance content for the two soils investigated. Overall, water extracts displayed the lowest humic substance content (in both soils) and the highest number of peptide identifications (in the soil investigated) with most frequent peptide hits associated with diverse substrate/ligand binding proteins of Proteobacteria and derived taxa. Our framework also highlighted a strong peptidic signal in unassigned and unmatched spectra, information that is currently not captured by the pipelines employed in this study. Taken together, this work points to specific areas for optimisation in chromatography and mass spectrometry to adequately characterise SOM associated metaproteomes.Publisher PDFPeer reviewe

    Contaminants in commercial preparations of ‘purified’ small leucine-rich proteoglycans may distort mechanistic studies

    Get PDF
    The authors are grateful to Genodisc (EC’s 7th Framework Programme (FP7, 2007-2013) under grant agreement no. HEALTH-F2-2008-201626) and the Orthopaedic Institute Ltd for funding.This paper reports the perplexing results that came about because of seriously impure commercially available reagents. Commercial reagents and chemicals are routinely ordered by scientists and are expected to have been rigorously assessed for their purity. Unfortunately, we found this assumption to be risky. Extensive work was carried out within our laboratory using commercially-sourced preparations of the small leucine-rich proteoglycans, decorin and biglycan, to investigate their influence on nerve cell growth. Unusual results compelled us to analyse the composition and purity of both preparations of these proteoglycans using both mass spectrometry and Western blotting, with and without various enzymatic deglycosylations. Commercial ‘decorin’ and ‘biglycan’ were found to contain a mixture of proteoglycans including not only both decorin and biglycan but also fibromodulin and aggrecan. The unexpected effects of ‘decorin’ and ‘biglycan’ on nerve cell growth could be explained by these impurities. Decorin and biglycan contain either chondroitin or dermatan sulphate glycosaminoglycan chains whilst fibromodulin only contains keratan sulphate and the large (>2,500 kDa), highly glycosylated aggrecan, contains both keratan and chondroitin sulphate. The different structure, molecular weights and composition of these impurities significantly affected our work and any conclusions that could be made. These findings beg the question as to whether scientists need to verify the purity of each commercially obtained reagent used in their experiments. The implications of these findings are vast, since the effects of these impurities may already have led to inaccurate conclusions and reports in the literature with concomitant loss of researchers’ funds and time.Publisher PDFPeer reviewe

    Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase

    Get PDF
    This study was supported by Wellcome Trust Grant 099220/B/12/Z (to R.M.E.) and Grant 094476/Z/10/Z that funded the purchase of the TripleTOF 5600 mass spectrometer at the Biomedical Sciences Research Complex (BSRC) of University of St. Andrews.Bunyamwera virus (BUNV) is the prototype of the Orthobunyavirus genus and Bunyaviridae family that contains important human and animal pathogens. The cleavage mechanism of orthobunyavirus glycoprotein precursor (GPC) and the host proteases involved have not been clarified. Here we found that NSm and Gc contain their own internal signal peptides, which mediate the GPC cleavage by host signal peptidase and signal peptide peptidase (SPP). Furthermore, the NSm domain-I plays an important postcleavage role in cell fusion. Our data clarified the implication of host proteases in the processing of the orthobunyavirus GPC. This work identifies SPP as a potential intervention target, and the knowledge we gained will benefit preventive strategies against other orthobunyavirus infections.PostprintPeer reviewe
    • 

    corecore