302 research outputs found

    Mean-Field Theory of Meta-Learning

    Full text link
    We discuss here the mean-field theory for a cellular automata model of meta-learning. The meta-learning is the process of combining outcomes of individual learning procedures in order to determine the final decision with higher accuracy than any single learning method. Our method is constructed from an ensemble of interacting, learning agents, that acquire and process incoming information using various types, or different versions of machine learning algorithms. The abstract learning space, where all agents are located, is constructed here using a fully connected model that couples all agents with random strength values. The cellular automata network simulates the higher level integration of information acquired from the independent learning trials. The final classification of incoming input data is therefore defined as the stationary state of the meta-learning system using simple majority rule, yet the minority clusters that share opposite classification outcome can be observed in the system. Therefore, the probability of selecting proper class for a given input data, can be estimated even without the prior knowledge of its affiliation. The fuzzy logic can be easily introduced into the system, even if learning agents are build from simple binary classification machine learning algorithms by calculating the percentage of agreeing agents.Comment: 23 page

    Consensus virtual screening approaches to predict protein ligands

    Get PDF
    In order to exploit the advantages of receptor-based virtual screening, namely time/cost saving and specificity, it is important to rely on algorithms that predict a high number of active ligands at the top ranks of a small molecule database. Towards that goal consensus methods combining the results of several docking algorithms were developed and compared against the individual algorithms. Furthermore, a recently proposed rescoring method based on drug efficiency indices was evaluated. Among AutoDock Vina 1.0, AutoDock 4.2 and GemDock, AutoDock Vina was the best performing single method in predicting high affinity ligands from a database of known ligands and decoys. The rescoring of predicted binding energies with the water/butanol partition coeffcient did not lead to an improvement averaged over all receptor targets. Various consensus algorithms were investigated and a simple combination of AutoDock and AutoDock Vina results gave the most consistent performance that showed early enrichment of known ligands for all receptor targets investigated. In case a number ligands is known for a specific target, every method proposed in this study should be evaluated

    PPIcons: identification of protein-protein interaction sites in selected organisms

    Get PDF
    The physico-chemical properties of interaction interfaces have a crucial role in characterization of protein–protein interactions (PPI). In silico prediction of participating amino acids helps to identify interface residues for further experimental verification using mutational analysis, or inhibition studies by screening library of ligands against given protein. Given the unbound structure of a protein and the fact that it forms a complex with another known protein, the objective of this work is to identify the residues that are involved in the interaction. We attempt to predict interaction sites in protein complexes using local composition of amino acids together with their physico-chemical characteristics. The local sequence segments (LSS) are dissected from the protein sequences using a sliding window of 21 amino acids. The list of LSSs is passed to the support vector machine (SVM) predictor, which identifies interacting residue pairs considering their inter-atom distances. We have analyzed three different model organisms of Escherichia coli, Saccharomyces Cerevisiae and Homo sapiens, where the numbers of considered hetero-complexes are equal to 40, 123 and 33 respectively. Moreover, the unified multi-organism PPI meta-predictor is also developed under the current work by combining the training databases of above organisms. The PPIcons interface residues prediction method is measured by the area under ROC curve (AUC) equal to 0.82, 0.75, 0.72 and 0.76 for the aforementioned organisms and the meta-predictor respectively. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00894-013-1886-9) contains supplementary material, which is available to authorized users

    Enhanced performance of gene expression predictive models with protein-mediated spatial chromatin interactions.

    Get PDF
    There have been multiple attempts to predict the expression of the genes based on the sequence, epigenetics, and various other factors. To improve those predictions, we have decided to investigate adding protein-specific 3D interactions that play a significant role in the condensation of the chromatin structure in the cell nucleus. To achieve this, we have used the architecture of one of the state-of-the-art algorithms, ExPecto, and investigated the changes in the model metrics upon adding the spatially relevant data. We have used ChIA-PET interactions that are mediated by cohesin (24 cell lines), CTCF (4 cell lines), and RNAPOL2 (4 cell lines). As the output of the study, we have developed the Spatial Gene Expression (SpEx) algorithm that shows statistically significant improvements in most cell lines. We have compared ourselves to the baseline ExPecto model, which obtained a 0.82 Spearman\u27s rank correlation coefficient (SCC) score, and 0.85, which is reported by newer Enformer were able to obtain the average correlation score of 0.83. However, in some cases (e.g. RNAPOL2 on GM12878), our improvement reached 0.04, and in some cases (e.g. RNAPOL2 on H1), we reached an SCC of 0.86

    Integrated web service for improving alignment quality based on segments comparison

    Get PDF
    BACKGROUND: Defining blocks forming the global protein structure on the basis of local structural regularity is a very fruitful idea, extensively used in description, and prediction of structure from only sequence information. Over many years the secondary structure elements were used as available building blocks with great success. Specially prepared sets of possible structural motifs can be used to describe similarity between very distant, non-homologous proteins. The reason for utilizing the structural information in the description of proteins is straightforward. Structural comparison is able to detect approximately twice as many distant relationships as sequence comparison at the same error rate. RESULTS: Here we provide a new fragment library for Local Structure Segment (LSS) prediction called FRAGlib which is integrated with a previously described segment alignment algorithm SEA. A joined FRAGlib/SEA server provides easy access to both algorithms, allowing a one stop alignment service using a novel approach to protein sequence alignment based on a network matching approach. The FRAGlib used as secondary structure prediction achieves only 73% accuracy in Q3 measure, but when combined with the SEA alignment, it achieves a significant improvement in pairwise sequence alignment quality, as compared to previous SEA implementation and other public alignment algorithms. The FRAGlib algorithm takes ~2 min. to search over FRAGlib database for a typical query protein with 500 residues. The SEA service align two typical proteins within circa ~5 min. All supplementary materials (detailed results of all the benchmarks, the list of test proteins and the whole fragments library) are available for download on-line at . CONCLUSIONS: The joined FRAGlib/SEA server will be a valuable tool both for molecular biologists working on protein sequence analysis and for bioinformaticians developing computational methods of structure prediction and alignment of proteins
    corecore